
AccountNet: Accountable Data Propagation Using Verifiable Peer Shuffling

Man-Ki Yoon
Department of Computer Science
North Carolina State University

Abstract—Collecting evidence of data that software systems
produce and consume can provide critical information for recon-
structing erratic behavior, tracing the origin of faults, and thus
holding the responsible party accountable for particular conse-
quences. However, when data propagates across trust boundaries
with conflicting interests, they can be tempted to make evidence
unprovable in order to avoid potential liability. Hence, we present
a data propagation protocol that makes such attempts either de-
tectable or ineffective by having data transfers witnessed by other
network participants that collectively act as the prover for the data
propagation process. The protocol builds an unstructured peer-to-
peer overlay and is designed to disincentivize collusion among a
malicious coalition of nodes by enforcing network participants
to constantly exchange their partial views on the network in
a random yet verifiable manner. A data producer or consumer
who does not faithfully follow the protocol ends up having fewer
witnesses from their side, making the network resistant to collusion
with high probability. We derive the conditions under which this
property holds and demonstrate the practicality and cost of our
approach through the implementation of a distributed application
built on top of the proposed protocol.

Index Terms—accountability, peer-to-peer network, data distri-
bution system

I. INTRODUCTION

Modern software systems are increasingly driven by data;
boosted by rapid development in artificial intelligence, software
components make intelligent decisions using data produced by
others. The advancement in communication technologies fur-
ther enables these systems to integrate functions and resources
distributed across wide-area networks (e.g., Machine Learning
as a Service or MLaaS [1], [2]). However, as these applications
become more inexplicable due to the high complexity and the
data-driven nature of their decision-making processes, the issue
of accountability arises – who should be held responsible for a
faulty operation? This can be answered by collecting irrefutable
evidence of data propagation among software components.
This would not be an issue in traditional monolithic systems
because the system developer/manufacturer is held solely re-
sponsible for any faulty/wrongful consequences. However, as
these systems are increasingly integrating components from
multiple parties (e.g., third-party vendors, outsourced services),
it is becoming more necessary to hold each party accountable
for its association with the data that it produces and consumes.
A lack of accountability mechanism could lead to a situation
where certain self-interested parties act unfaithfully to make
their potentially faulty/wrongful behaviors unprovable; to avoid
liability, hide unauthorized information flow, etc.

In this paper, we consider the problem of assigning account-
ability to data propagation across network nodes. Proving data
propagation between network nodes is especially challenging
unless there exists a trustworthy ‘broker’ that routes all data
traffic for every pair of data producer and consumer. However,

such a centralized entity can easily become a single point
of failure and a performance bottleneck. Hence, we propose
AccountNet, a decentralized protocol that is based on peer-
to-peer overlay networking. In this protocol, a subset of the
network participants, called witness nodes, act collectively as
the prover for data propagation between a pair of data producer
and consumer. They are selected randomly by the producer-
consumer pair themselves from their (logical) neighborhoods
and collect logs about what they relay between the pair.

The key challenge in this protocol lies in that nodes can be
malicious or simply non-cooperative. More seriously, an ill-
intentioned data producer or consumer is tempted to influence
the selection of witness nodes to make the evidence collected by
them unusable or favorable to him/her. This could be achieved
by polluting its neighborhood (and the opposite side’s) with as
many colluders as possible using techniques such as Eclipse
attacks [3], [4] in an attempt to have the colluders take up the
majority of the witness group. Our solution to this challenge is
to enforce the network nodes to shuffle their peers continuously
with others in a random yet verifiable manner to prevent the
neighborhoods from being manipulated. With this protocol,
those who participate faithfully in the protocol are incentivized
when forming a witness group. On the other hand, malicious
nodes are either detectable or likely to form a separate overlay
of their own. Our witness-forming algorithm takes advantage
of this property – a malicious producer/consumer is likely to
end up either (i) having to follow the protocol correctly or (ii)
having fewer candidates from its side with high probability,
making collusion attempts futile. We present an analysis for
finding network parameters for a probabilistic tolerance to
collusion, which we also validate experimentally. Lastly, as
a case study, we implement a broker-less publish-subscribe
communication layer on top of the AccountNet protocol, apply
it to a cloud-based machine learning service, and discuss the
cost of the approach as well as its practicality.

II. PROBLEM STATEMENT AND MODELS

A. Motivating Scenario

Consider a robotic system that needs a vision-based inference
task. Due to a lack of a proper hardware accelerator, such as
a graphical processing unit, or a rigorous inference model,
it decides to use an online machine learning service that
returns inference results given images captured locally (‘cloud
robotics’ [5], [6]). The ML service provider is aware of its
subpar performance, and thus it is tempted not to leave any
provable evidence of response to the service user to avoid any
potential liability that could arise from an incorrect inference.
Conversely, the service user, e.g., the robotic system, wants to
leave provable evidence that can be used to assign culpability to

“Sent 𝑑!’’
Network

“Received 𝑑"’’

𝑑!? or 𝑑"?
Data

Producer
Data

Consumer

Fig. 1. Scenario when data producer and consumer report conflicting logs
about data propagation between them.

the ML service provider in the event of an erroneous operation
due to its incorrect inference. In these scenarios, a proper
accounting protocol can help trace the origin of erratic behavior
and thus resolve disputes among the parties involved, building
transparency in data propagation into data-driven applications.

B. Problem Description
We consider a problem of assigning accountability for data

production and consumption to network nodes. If there was
a propagation of data D from a node to another, neither can
deny the production/consumption of D. Similarly, neither can
pretend to have produced/consumed data D if a propagation
did not happen or D′ ̸= D was propagated. Ill-intentioned data
producers or consumers are motivated not to leave any provable
evidence of these actions as aforementioned.

Suppose nodes are asked to write logs about data that they
produce and consume, as depicted in Fig. 1. This scheme could
allow a self-interested node to act unfaithfully. For instance,
a malicious receiver may write to the log that it received
d2 when it actually received d1. The receiver may even not
enter any log at all as if no data transfer happened, accusing
the producer. Data producers can have similar motivations.
Especially when the nodes gain no benefit from being honest
about their association with particular data propagation, they are
tempted to fabricate/hide log entries. Of course, such behaviors
(e.g., reporting fixed/random data or even nothing) would look
obviously suspicious. However, there remains no evidence that
can prove such malicious actions. Hence, when log entries
conflict with one another, it is difficult to figure out whose log
is correct unless the actual data transmissions are observable.

C. Can Digital Signatures Solve the Problem?
Suppose a digital signature is used for a data propagation

from node 1 to node 2. That is, node 1 signs data d (or its
hash) using its private key and sends both the data and the
signature (which is simply a bitstring from other’s perspective)
to node 2. Now, both nodes are asked by a third-party verifier
to present the data and signature pair that they sent/received,
as illustrated in Fig. 2. Suppose that node 1 claims that it
sent data d1 (with a bitstring s1) while node 2 claims that
it received data d2 ̸= d1 (with a bitstring s2). Now, the verifier
tries to determine who is correct given (d1, s1) and (d2, s2).
The verifier possesses the public key of node 1, pk1, and the
signature verifying algorithm V (pk, d, s) that outputs valid if
s is a signature on d signed by the private key that corresponds
to pk or invalid otherwise.

At a minimum, a malicious producer would never present
an invalid signature. Hence, V (pk1, d1, s1) is always valid.
Now, suppose the verifier sees V (pk1, d2, s2) = invalid.
Does this necessarily indicate that node 2 is dishonest? We
can consider the following cases (see Fig. 2):

(a) Node 2 is being dishonest (b) Node 1 is being dishonest

𝒅𝟏 , 𝒔𝟏 𝑑", 𝑠"Node
1

𝑑#, 𝑠# 𝑑", 𝑠"

𝒅𝟐, 𝒔𝟐Node
1

𝑑# , 𝑠#
(Truth) (Truth)Verifier

Node
2

Node
2Verifier

Fig. 2. Verifier cannot determine who is being dishonest given data-signature
pairs (d, s) from the sender and the receiver.

(a) Node 2 is being dishonest (i.e., node 1 indeed sent d1, s1):
Node 2 has fabricated s2 by altering s1 (given by node 1)
or creating a completely-random one, and now it claims
that node 1 sent d2 with an invalid signature s2 and that
node 1 is ‘pretending’ that it sent d1 and s1.

(b) Node 1 is being dishonest (i.e., node 1 actually sent
d2, s2): Node 1 has given an invalid signature s2 (e.g.,
a random bitstring) to node 2, and now it clams that
node 2 is ‘pretending’ that it received d2 and a fabricated
signature s2 in order to falsely accuse node 1.

Notice that (a) and (b) are indistinguishable from the verifier’s
perspective. That is, the verifier cannot determine whether the
invalid signature s2 is (a) fabricated by node 2 or (b) given by
node 1. This ambiguity is caused because a digital signature
no longer carries its non-repudiation property when it is not
directly provided by the signer. This is why node 1 in Fig. 2
would never present an invalid signature to the verifier, whereas
the verifier cannot verify the non-repudiation property of s2
which is ‘told by’ node 2 who may or may not be honest.
Therefore, digital signatures cannot solve the accountability
problem stated above.

D. System and Adversary Models

We assume that nodes can join and leave the network at
arbitrary times. Each node vi is associated with a unique
identifier such as IP (Internet Protocol) address with a port
number, denoted by addri. Note that our use of peer-to-peer
overlay is not for efficient search of data items. That is, the
addresses of data sources are publicly known, and we do not
concern about how nodes obtain the address information. We
also assume that data is eventually delivered within a bounded
time unless the connection is permanently lost and that there
is no transmission error (e.g., data is delivered over TCP/IP).

Nodes are either benign or malicious. Benign nodes faithfully
follow the data propagation protocol that will be presented
in the rest of the paper. Nodes are motivated to act benign
especially if they want their association with particular data
production/consumption to be provable. Malicious nodes act
in favor of the colluding nodes that share the same interest
(e.g., from the same administrative domain). There can also
be nodes that are arbitrarily Byzantine. However, from the
security analysis point of view, we do not differentiate between
malicious nodes and Byzantine nodes. Hence, we view both
types as malicious nodes – they cannot be assumed to follow the
protocol. There can be multiple collusion groups. However, we
view all of them (regardless of where they belong) as a single,
large coalition of colluding nodes for the worst-case security
analysis. We assume that a network of size |V | is expected to
have about pm|V | malicious nodes (equivalently, a node can be
malicious with a probability pm), but they are unknown.

p
c

p’s neighborhood

c’s neighborhood

: witness

a

b

i
j

f

e

c

d

N! 𝑟! = {𝑎, 𝑏, 𝑓, 𝑗}

N" 𝑟" = {𝑐, 𝑑, 𝑒, 𝑓}

(a) Data propagation (pà c) through witnesses (b) Peersets of i and j

Fig. 3. Peer-to-peer overlay of AccountNet.

Sybil attack [7] is a serious threat to peer-to-peer networking
and it can only be mitigated, not prevented. Hence, we assume
that a mitigation approach is taken; for instance, limiting IP
mapping [8], [9], using a trusted authority to certify identity [3],
[10], [11], or even using computational puzzles [12].

III. OVERVIEW OF ACCOUNTNET

In AccountNet, all network participants serve as witnesses to
data propagation between others as illustrated in Fig. 3(a). Due
to the absence of a centralized entity that has a full view of the
entire network, these witness nodes are selected by a producer
and consumer pair when they establish a data propagation
channel. The witnesses relay data between them and capture
evidence about it which can be used later to resolve any dispute
between the producer and consumer. However, some witnesses
could be malicious, hence they could alter/drop the data being
relayed or even fake the logs in the interest of a colluding
producer/consumer. Furthermore, the data producer/consumer
may influence the witness selection process to fill the witness
group with as many colluding nodes as possible.

Our solution to these challenges is to let nodes construct a
peer-to-peer overlay network and to incentivize those who learn
about more peers. Specifically, nodes maintain information
about a small set of peers, which we call the peerset. Fig. 3(b)
shows examples. Nodes repeatedly perform a gossip-based peer
sampling [13], [14] to update their partial view on the network,
which is known to lead the network to behave uniform-
randomly; by shuffling one’s peerset with another, nodes are
likely to have peers as if sampled uniform-randomly from
the whole network. It is important to note that the overlay is
unstructured because otherwise (i.e., structured overlay such as
[15]–[17]), malicious nodes may take advantage of a structural
property (e.g., by occupying particular addresses) to have a
biased set of peers [3], [18].

The key idea of AccountNet is to enforce nodes to shuffle
their peerset in a verifiable way. Nodes are required to keep
records of the peerset shuffling, which can be verified by any
other nodes. When a node performs a shuffling, the records are
given to the counterpart and verified whether the node’s peerset
has been manipulated. When drawing witnesses between a data
producer and consumer pair, a set of witnesses are selected
randomly from their neighbors (in the overlay graph, not in
a geographical sense) with weights proportional to the neigh-
borhood size. This disincentivizes malicious nodes that form
clusters among themselves. As will be seen later, nodes are

likely to have larger neighborhoods if following the protocol
faithfully.

In summary, (i) each node maintains a set of peers that are
constantly updated by a verifiable peer shuffling (Sec. IV) and
(ii) when establishing a data channel, a group of witnesses is
sampled, also in a verifiable manner, from the neighborhoods
of data producer and consumer (Sec. V).

IV. VERIFIABLE PEER SHUFFLING

A. Protocol Detail

Nodes perform three types of protocol operations: join,
shuffle, and leave. Each operation creates records of their
interactions with others which can be verified by any others.
Peerset Update History: In order to prevent a malicious node
from arbitrarily manipulating its peerset, nodes are required
to keep records of changes in their peersets. These records,
called Peerset Update History, are provided to other nodes
(when shuffling peers or forming a witness group) to prove
from whom and when each of the peers is learned of.

Ni[ri] denotes the peerset of node vi as of round ri. Its
peerset update history at round ri is an ordered-list of entries:

Ωi[ri] = (ωi,0, ωi,1, . . . , ωi,ri).

An entry is defined by ωi,r = (vj , σj(nonce), nonce, out,
in, fill) where vj is the node that vi interacted with (e.g.,
shuffling counterpart), and σj(nonce) is a message signed on
an operation-specific nonce that prevents vi from forging the
entry. For example, when shuffling its peerset, the counterpart’s
round number is used as the nonce. The last three fields, i.e.,
out, in, and fill, specify how the node’s peerset changed at the
rth round. For instance, out is the set of peers that are removed
from vi’s peerset due to a shuffling. The detail about these fields
will be explained shortly below.
Network join: Nodes can join the network through any other
node that is already in the network, as in general peer-to-peer
overlay networks [9], [13], [19], [20]. We do not assume a
particular method of obtaining the address of a bootstrap node;
it can be obtained through certain out-of-band means, e.g.,
using a directory service or by scanning a local network.

Let vbn denote the bootstrap node through which vi joins the
network. vbn gives vi the list of its neighbor nodes with depth
up to d (see Fig. 7). Upon receiving the list (and storing it
internally for verification purposes), vi randomly selects up to
f nodes from it, using the same verifiable random sampling that
is used for peer shuffling (which will be explained in ‘Verifiable
shuffling’ below). The set of the selected nodes becomes vi’s
initial peerset, Ni[0]. The bootstrap node also creates an entry
stamp, σbn(addri), for vi. Then, vi creates the first entry of the
peerset update history:

ωi,0 = (vbn, σbn(addri), addri, out = ∅, in = Ni[0], fill = ∅).
Any node who is given this entry can verify the origin of vi
using the entry stamp σbn(addri).
Shuffling: Each node vi repeatedly shuffles its peerset ran-
domly in rounds by exchanging a random sample of the set
with that of another peer’s. Suppose it is vi’s ri

th round. The
high-level shuffling protocol (adopted from [21]) is as follows:

c

d

i

e
b

f

l

j

g

k

h

a

N! 𝑟! = {𝑎, 𝑏, 𝒄, 𝑑, 𝒆, 𝒋}

N" 𝑟" = {𝑒, 𝒇, 𝑔, 𝒉, 𝒌, 𝑙}

c

d

i

e
b

f

l

j

g

k

h

a

N! 𝑟! + 1 = {𝑎, 𝑏, 𝒇, 𝑑, 𝒉, 𝒌}

N" 𝑟" + 1 = {𝑒, 𝒄, 𝑔, ℎ, 𝒊, 𝑙}

Shuffle

Fig. 4. Peer shuffling between vi and vj .

1) vi first selects a node vj randomly from its current peerset
Ni[ri] as the shuffling counterpart.

2) vi selects L− 1 more nodes, denoted by set A, from its
peerset and sends A ∪ {vi} to vj .

3) vj selects L nodes, denoted by set B, from its current
peerset Nj [rj] and sends B to vi.

4) vi updates it peerset by removing A ∪ {vj} and then
adding those in B. Similarly, vj updates it peerset by
removing B and then adding those in A ∪ {vi}.

Fig. 4 shows an example shuffling. In the last step of the
protocol, space can be left after the update due to the possibility
of duplication; e.g., some node vx ∈ B already exists in
Ni[ri]−(A∪{vj}). In such a case, the space is filled with some
of the peers sent to the other side (e.g., drawn from A ∪ {vj}
for vi or from B for vj). Let us denote them by Ci and Cj for
vi and vj respectively. This last step prevents the peerset size
from diminishing to zero.

In AccountNet, a shuffling results in creating a peerset
update entry for each side. First, vi’s entry is

ωi,ri = (vj , σj(rj), rj , out = A ∪ {vj}, in = B, fill = Ci).
The corresponding entry for vj is

ωj,rj = (vi, σi(ri), ri, out = B, in = A ∪ {vi}, fill = Cj).
After this exchange, their peersets become

Ni[ri + 1] =
(
Ni[ri]− (A ∪ {vj})

)
∪ B ∪ Ci and

Nj [rj + 1] =
(
Nj [rj]− B

)
∪
(
A ∪ {vi}

)
∪ Cj ,

respectively. Notice that vi, who initiated the shuffling, becomes
a peer of vj , if it was not, after this shuffling.
Example 1. For the shuffling shown in Fig. 4, the following
entries are created at vi and vj , respectively:

ωi,ri = (vj , σj(rj), rj , out = {c, e, j}, in = {f, h, k}, fill = ∅)
ωj,rj = (vi, σi(ri), ri, out = {f, h, k}, in = {c, e, i}, fill = {h})

Fig. 5 shows how the peer shuffling explained above leads
nodes to discover others. The color of each element in the

Node ID (0: oldest, 99: newest)

No
de

 ID
 (0

: o
ld

es
t,

99
: n

ew
es

t)

Fig. 5. Nodes discover others through a series of random peer shuffling.

Algorithm 1: Shuffle(vi)
ri: vi’s current round number

h0, π0 ← vrfi(ri)
vj ← select(Ni[ri], h0) // Draw a shuffle partner
rj ← vj ’s round number
A ← ∅
Pi ← ∅ // Proofs of sampling
k ← 1
while |A| ≤ L− 1 do

hk, πk ← vrfi(rj ||k)
vk ← select(Ni[ri]− {vj}, hk)
if vk /∈ A then
A ← A∪ {vk}
Pi ← Pi ∪ {πk}

end
k ← k + 1

end
Send vj (i) A ∪ {vi}, (ii) Pi ∪ {π0}, (iii) Ni[ri], (iv) Ωi[ri], (v) ri

and σi(ri)
Receive from vj (i) B, (ii) Pj , (iii) Nj [rj], (iv) Ωj [rj], (v) rj and
σj(rj)

if Verify(Ωj [rj],Nj [rj],Pj ,B) = True then
Update(Ni[ri], vj , σj(rj), rj ,A,B)

end

Algorithm 2: Select(X,h)
X: ordered list of nodes

Q← ⌈log2 |X|⌉
index← h | (2Q − 1) // Bitwise-AND
return X[index] or Null if index > |X|

heatmaps represents whether node i and j have shuffled their
peersets with each other at least once. If a network was
(roughly) partitioned, the heatmaps would show clusters. In a
well-shuffled network, old nodes and newer nodes can discover
each other as the figure shows.

Verifiable shuffling: The shuffling protocol presented above
can be exploited by a malicious node; it may shuffle only
with colluding nodes or try to pollute other benign nodes’s
peersets with its colluders. To prevent such a node from
arbitrarily manipulating peer shuffling, we make the procedure
verifiable yet still random. The key idea is that given the
current peerset, the next shuffling-counterpart is deterministic.
However, the random sample cannot be determined until a
nonce is provided by the counterpart (e.g., its round number).
Algorithm 1 presents a pseudocode of the verifiable shuffling
algorithm. It calls Algorithm 2 to select a node from list X
given a hash value h. After node i receives a sample of peers
from node j, it verifies the correctness of the sampling by

Algorithm 3: Update(Ni[ri], vj , σj(rj), rj ,A,B)
Ni[ri + 1]← Ni[ri]− {vj} − A
Ni[ri + 1]← Ni[ri + 1] ∪ B
if Ni[ri + 1] is not full then
Ci ← select nodes randomly from A ∪ {vj} to fill Ni[ri + 1]
Ni[ri + 1]← Ni[ri + 1] ∪ Ci

else
Ci ← ∅

end
ωi,ri = (vj , σj(rj), rj , out = A, in = B, fill = Ci)
Ωi[ri]← Ωi[ri] · ωi,ri // Add new entry
ri ← ri + 1

i j

Round number?

𝑟!Sample L-1 nodes from
𝑁"[𝑟"] using 𝑟!

Select 𝑣! from 𝑁"[𝑟"]
using 𝑟"

𝑟" ,	𝜎#(𝑟"),𝒜 ∪ {𝑣"}
𝑃" ∪ {𝜋$}, 𝑁" 𝑟" , Ω"[𝑟"]

Sample L-1 nodes from
𝑁![𝑟!] using 𝑟"𝑟! ,	𝜎%(𝑟!), 𝐵

𝑃! , 𝑁! 𝑟! , Ω![𝑟!]
Verify peerset and shuffling

Create 𝜔",'!	

Verify peerset and shuffling

𝑟! = 𝑟! + 1𝑟" = 𝑟" + 1

1
2

3
4

5
6

7
8

9

10 Update peerset
11 Create 𝜔!,'"	

10 Update peerset
11

1212

Fig. 6. Shuffling process between vi and vj .

calling Verify, which follows similar steps as in Algorithm 1
(hence not defined separately). If the verification is passed,
Algorithm 3 is called to update the node i’s peerset and to
extend the peerset update history.

Fig. 6 summarizes the verifiable shuffling process. First, vi,
who initiates a shuffling, calls a verifiable random function [22],
using its current round number ri as the input, to select the next
shuffling counterpart. Then, it asks the selected node, vj , for
its round number rj . Now, using it as a nonce, vi selects L−1
nodes from its own peerset. Specifically, for k = 1, 2, . . ., it
computes

hk, πk = vrfi(rj ||k),

where hk is the hash output and πk is the proof that hk is
correct. Because rj , the round number of the counterpart, is
used as a part of the nonce, vi cannot pre-select peer samples
(similarly, vj uses vi’s round number when sampling nodes
from its peerset). Using the hash output hk as the index, vi
retrieves a node from the sorted list of peers. Because the size
of the hash space (e.g., 512-bit) is much larger than that of the
peer list, we use the first (or last) Q bits of the hash output as
the index, where Q is the smallest integer such that 2Q ≥ |X|
where X is a peer list. Note that the kth selection may not pick
a new peer, in which case hk and πk are discarded and a new
hash is computed for k+1. This procedure repeats until L− 1
distinct nodes are selected. vi (resp. vj) includes the proofs of
the hash outputs as well as its current peerset when sending
the random sample of peers to vj (resp. vi).

Now, given vi’s peerset, its round number, and the proofs
generated by the verifiable random function above, vj can
verify if (i) itself should indeed be the shuffling counterpart for
vi’s current round and (ii) vi’s random peer samples are correct,
by performing the same sampling procedure as if it is vi.
Because vj knows the input to the verifiable random function,
i.e., its round number rj , it can verify the peer samples from
vi. Hence, a malicious node would not try to make up a biased
sample because it is easily detectable. However, it could still
try to manipulate the random sampling by forging the peerset
(where the sample is drawn from), not the sample; some nodes
can be added (especially colluding ones) or removed (especially
benign ones) as if they have existed or not. However, such
attempts can be detected by reconstructing the counterpart’s
peerset from the peerset update history.

Peerset reconstruction: Suppose a node received the peerset
update history of vi, i.e., Ωi[ri] = (ωi,a, ωi,a+1, . . . , ωi,ri)
where ωi,a is the oldest entry. Then, the node can reconstruct
vi’s peerset, N̂i[ri], by iterating over the entries in the chrono-
logical order. Specifically, for each entry

ωi,r = (vk, σk(nonce), nonce, out, in, fill)

we apply the following recursive operation:

N̂i[r] =
(
N̂i[r − 1]− out

)
∪ in ∪ fill

where N̂i[a− 1] = ∅.
Note that N̂i[r] ⊆ Ni[r] must hold. Hence, it is node vi’s

responsibility to provide a sufficiently long peerset update
history that is enough to reconstruct N̂i[r] = Ni[r]. In fact,
nodes do not need to send a long list of entries. Suppose we
select L nodes from the peerset in each round. Letting f be
the maximum size of the peerset, the probability that a node
vx stays in the peerset after one round of shuffling is f−L

f .
Hence, the probability that the node stays in the peerset for
m consecutive rounds is (f−L

f)m. If f = 10 and L = 5,
the probability is 0.1% and 0.003% for m = 10 and 15,
respectively.

When shuffling peerset, nodes can send Ωi[ri] =
(ωi,a, ωi,a+1, . . . , ωi,ri) where ωi,a contains (in the ‘in’ field)
the oldest node(s) in the current peerset, with which it is
guaranteed that N̂i[r] = Ni[r]. When requested by another
node, vi may provide an old-entry lookup service, which can
be used for tracing back the origin of a particular node.
Peerset verification: Before node vi updates its peerset using
samples received from vj , it verifies if vj indeed performed an
unbiased random sampling from its current peerset. For this,
vi first checks if N̂j [rj] = Nj [rj] by reconstructing N̂j [rj]
from vj’s peerset update history Ωj [rj] as explained above.
Furthermore, for each entry ωj,r in Ωj [rj]

ωj,r = (vk, σk(r
′), r′, outj , inj , fillj),

vi can ask vk for the corresponding entry

ωk,r′ = (vj , σj(r), r, outk, ink, fillk)

which should be found in vk’s peerset update history if vj
and vk performed the shuffling. Furthermore, these two entries
should satisfy outj = ink and inj = outk. Also, the following
invariants must hold for each ωj,r:

• vk ∈ N̂j [r] if vj initiated the shuffling: the counterpart,
vk, was selected from vj’s peerset at its rth round;

• outj ⊆ N̂j [r]: a random subset of peers given to the
counterpart was sampled from vj’s peerset at its rth round.

These are verified by the same verification process used during
the peer shuffling explained earlier.
Leaving network: Nodes may leave the network gracefully or
abruptly. In case of a graceful leaving (of node vx), the node
may inform its peers of the leaving. Nevertheless, there can be
nodes in the network that have vx as a peer, but not vice versa.
Hence, they will not be aware of vx’s leaving until it is selected
as a shuffling counterpart (or a random ping test fails). Thus, in
our protocol, we assume nodes leave the network ungracefully.
Suppose a node vi has detected that vx is inactive. Then, vi
informs its own peers of vx’s leaving, sending a signed message

σi(ri). Each of the peers, say vj , may individually check vx’s
liveness (e.g., ping test [11]). Upon successful confirmation of
vx’s leaving, vj adds the following entry to its peerset update
history regardless of vx being in its current peerset:

ωj,rj = (vi, σi(ri), ri, out = {vx}, in = ∅, fill = ∅).
This entry should be found in the peerset update history of
every vj ∈ Ni[ri].

B. Security Analysis
An adversary will try to maximize the footprint of malicious

nodes in the network’s peersets so that they are likely to be
selected as witnesses for many (or particular) data channels.
Hence, the adversary is motivated to target a particular shuf-
fling counterpart and also to compose a peer sample set with
malicious nodes by not sampling randomly from its peerset
or even by faking it as well as the peerset update history. In
what follows, we explain how such attempts are deterred or
detectable and why a group of malicious nodes would have to
either (i) follow the shuffling protocol correctly (thus acting as
benign nodes during shuffling) or (ii) separate themselves from
the network of benign nodes.
How difficult is it for a malicious node to manipulate
its peerset? Suppose that a malicious node vm wants to
manipulate its peerset for the r + 1th round, i.e., Nm[r + 1],
so that certain peers are included/excluded. For this, it should
be able to fabricate its peerset update history Ωm[r] =
(ωm,0, ωm,1, . . . , ωm,r−1, ωm,r) that can reconstruct the desired
Nm[r + 1]. Let us first consider the latest shuffling:

ωm,r = (vc, σc(r
′), r′, out, in, fill),

which indicates that vm performed a shuffling with a node vc.
First of all, for the entry to look valid, vc must be in collusion
with vm. Otherwise, ωm,r cannot be fabricated because vi
cannot forge σc(r

′) unless it possesses vc’s private key. Now,
fabricating a valid entry ωm,r is equivalent to finding a solution
to the following equation:

Nm[r + 1] =
(
Nm[r]− out

)
∪ in ∪ fill. (1)

A similar equation for the colluding node vc also needs to be
solved together. Because r is fixed, vm and vc must be able to
find Nm[r], Nc[r

′], and r′ that satisfy Eq. (1). If vm initiated the
shuffling, the following additional constraints must be satisfied:

• vc ∈ Nm[r],
• vrfm(r)’s hash output is mapped to the index of vc in the

‘sorted’ list of Nm[r].
Notice from the verifiable shuffling procedure that there are
dependencies among the variables:

• A change in r′ causes a change in the random sample from
vm which is the out field in Eq. (1);

• The out field is also dependent on the vm’s peerset at the
rth round, i.e., Nm[r], that needs to be determined as well;

• A change in Nc[r
′] causes a change in the random sample

from vc which is the in field;
• The fill field is determined by Nm[r], out, and in.

If a combination of the four variables does not satisfy Eq. (1),
one should backtrack and try a different combination. That is,

each variable cannot be determined independently. Hence, vm
and vc have to enumerate the combinations of the variables.
Even if a solution to Eq. (1) was found, it becomes the base
constraint for the next search for the solution to ωm,r−1, that
is, Nm[r] = (Nm[r − 1] − out) ∪ in ∪ fill, and also for vc’s
peerset update histories. Furthermore, as the length of the vm’s
peerset update history that needs to be fabricated increases,
more colluding nodes are involved, which makes the search
space grow exponentially while further reducing the solution
space.

Does a malicious node gain any benefit from having be-
nign peers? As discussed above, malicious nodes can collude
with each other to manipulate their peersets. Now, suppose
a malicious node vm has a benign node vb as a peer, i.e.,
vb ∈ Nm[rm]. Once vm performs a shuffling with vb, the
former becomes a peer of the latter (see Fig. 4). Since then,
vm can be asked to do a shuffling by vb or other benign
nodes who learned of vm from vb through peerset shuffling,
which cuts the chain of collusion mentioned above. Hence,
vm can no longer manipulate its peerset (and peerset update
history) without being detected by benign nodes. In addition,
having a benign neighbor would only decrease the chance of
its colluding nodes being selected as witnesses. Also, as will
be explained shortly, common neighbors are excluded from the
witness selection, and hence malicious nodes would not want
to be peers of benign nodes. Therefore, vm, a malicious node,
has no benefit of having a peer relationship (in both directions)
with benign peers. Following this rationale, a group of colluding
nodes would create a separate network in which nodes have no
peer relationship with those in the benign network.

Malicious bootstrap node: If a new node vi joins the network
through a malicious bootstrap node vbn, the latter may try to fill
vi’s initial peerset with other malicious nodes. In the worst case,
the neighbor list provided by vbn can consist only of malicious
nodes. However, the size of such a neighbor set is likely to be
small compared to average cases (i.e., a neighbor of a benign
node), as will be explained in the next section. Hence, the node
vi can decide whether to join the network through vbn or try a
different bootstrap node based on the size of the neighborhood
given by vbn. If a node becomes a part of a malicious cluster,
it would encounter fewer and fewer new peers as it performs
shuffling. This is a way to detect if one has joined the network
through a malicious bootstrap node.

V. WITNESS GROUP FORMATION

As explained in Sec. III, a set of witness nodes are randomly
drawn from the neighborhoods of data producer and consumer.
Viewing the AccountNet network as a directed graph G =
(V,E) where V is the set of network participants and E is a
set of directed edges E = {(va, vb)|(va, vb) ∈ V 2 ∧ vb ∈ Na}
that represents peer relationships, the neighborhood of node vi
with depth up to d is defined by

Nd
i = {vx|dist(vi, vx) ≤ d}

where dist(va, vb) is the length of the shortest path from va
to vb. (Note: in this section, we simplify the notations by
omitting round numbers, e.g., Ni = Ni[ri], unless otherwise

i N!"

Fig. 7. The neighborhood of vi with depth up to 2.

needed.) If vb is a direct peer of va, dist(va, vb) = 1. By the
definition, Ni = N1

i . Hence, a witness may not be a direct peer
of data producer/consumer. A node can find its neighborhood
by flooding a query message, with the radius-limit set to d, to
every peers. Fig. 7 shows an example of N2

i .
Suppose a data channel between nodes vi and vj is to be

created. Once Nd
i and Nd

j are found, vi and vj exchange the
neighbor sets (and the up-to-date peerset update histories) for
verification. Using the same procedure in Sec. IV, vi can verify
the correctness of Nd

j by traversing from vj ; for each node on
a search path, vi verifies the node’s peerset by requesting its
peerset update history. vi can reduce search and verification
efforts by random walking.

Upon successful verification, vi and vj compute the witness-
allocation ratios proportional to their neighborhood sizes:

αi = |Nd
i |/(|Nd

i |+ |Nd
j |), αj = |Nd

j |/(|Nd
i |+ |Nd

j |).
Letting |W | be the agreed-upon size of the witness group, vi
and vj sample αi|W | and αj |W | nodes from their respective
neighbor sets in the same way as in the peerset shuffling, which
is then verified by the other side before finalizing the witness
group. Here, we exclude those nodes on both sides because the
chance of node vx ∈ Nd

i ∩Nd
j being selected is twice that of the

others. This could be taken advantage of by a malicious side by
polluting the opposite side’s neighborhood with its colluders.

As aforementioned, the witnesses act as 1-hop relay between
a producer and a consumer. The captured evidence can be used
later by a third-party resolver using a simple majority scheme.
The rest of this section answers the following question: given
the probability of nodes being malicious, how the network
parameters should be chosen to probabilistically guarantee that
more benign witnesses are selected than malicious ones? The
key is that neighborhoods should not be too small or too large.

A. Neighborhood Size

Given a depth limit d and the peerset size f , |Nd
i | ≤ (fd+1−

f)/(f − 1) holds for any node vi. This is because a node’s
neighborhood is maximal when none of the neighbors share
any peers. In this case, the neighborhood forms a perfect f -
ary tree with a depth of d. Hence, the number of neighbors
(excluding the root) in this case, denoted by |Nd|∗, is

|Nd|∗ =

d∑
k=1

fk = (fd+1−1)/(f−1)−1 = (fd+1−f)/(f−1).

Now, the expected size of one’s neighborhood, denoted by
|Nd|, can be calculated by a combinatorial analysis. Algorithm 4

Algorithm 4: expected neighborhood size(|V |, f, d)

n← 1, #iter ← fd−1
f−1

for i = 0, 1, . . . ,#iter − 1 do
for k = 0, 1, . . . , f do

Pr(X = k)←
(n−1

k

)(|V |−n
f−k

)/(|V |−1
f

)
end
∆n←

∑f
k=0(f − k) · Pr(X = k)

n← n+∆n
end
return n− 1

𝑛 = 1 𝑛 = 3.0

Δ𝑛 = 2.0

𝑛 = 5.76

Δ𝑛 = 1.55

𝑛 = 4.55

Δ𝑛 = 1.21

Expand

Expand
Expand

Fig. 8. Finding the expected neighborhood size for |V | = 10, f = 2, d = 2.
Each step can be viewed as selecting f peers from the pool of |V | −n nodes.

presents the pseudocode. Intuitively speaking, the algorithm can
be viewed as forming an f -ary tree with depth up to d. Fig. 8
illustrates the algorithm. It starts with a single node (n = 1),
i.e., the root of the tree. Then, its f peers are randomly drawn
from the rest of the network and added to the tree as the children
of the root node. This repeats for each of the newly-added
nodes. Now, some of the randomly-chosen nodes may have
already been added to the tree, which is especially the case
when the network size is small. Thus, a random expansion may
add fewer than f new nodes to the tree. Suppose that there
are currently n nodes in the tree and that a random draw is
to be performed. To find the expected increase in the number
of distinct nodes (∆n) due to this sampling, we calculate the
probability of picking k peers from the existing nodes (that
have already been included in the neighbor set, i.e., the f -ary
tree) and that of picking f −k peers from the rest (i.e., |V |−n
nodes). For this, let X be a random variable that represents the
number of peers selected from those already in the tree. Then,
it follows the hypergeometric distribution:

Pr(X = k) =

(
n− 1

k

)(
|V | − n

f − k

)/(
|V | − 1

f

)
. (2)

The denominator represents the number of ways to select
f peers from the entire network (i.e., |V | − 1 nodes). The
numerator represents: k of them are selected from those already
added (i.e., n− 1 nodes) and f − k from the rest (i.e., |V | −n
nodes). Then, the neighborhood size is increased by f − k.
Using Eq. (2), we calculate Pr(X = k) for 0 ≤ k ≤ f , from
which we obtain the expected increase ∆n:

∆n =

f∑
k=0

(f − k) · Pr(X = k).

This process (i.e., n = n + ∆n) repeats for fd−1
f−1 times, the

number of internal nodes in a perfect f -ary tree with a depth
of d. The expected size of one’s neighborhood is then n − 1
(because the starting node should be excluded). For a very large
network, each expansion is likely to add ∆n = f new nodes to
the neighbor set because Pr(X = 0) ≈ 1. Thus the expected
neighborhood size is maximized to (fd−1)/(f−1)·f = |Nd|∗.

101 102 103 104 105

Network size (|V|)

20

40

60

80

100
Ex

pe
ct

ed
 n

ei
gh

bo
rh

oo
d

siz
e

(|N
d |)

d = 2

f = 10
f = 5
f = 3

101 102 103 104 105

Network size (|V|)

0

200

400

600

800

1000

d = 3

f = 10
f = 5
f = 3

Fig. 9. Expected neighborhood size, |Nd|, for different combinations of |V |,
f , and d. Notice the difference in the y-scales.

Example 2. Suppose the network consists of |V | = 10 nodes,
the maximum peerset size is f = 2, and the depth limit is d = 2.
Fig. 8 shows the steps to calculate the expected neighborhood
size. The calculation starts with n = 1. The first ∆n = 2.0
is because there is no way to select a peer from the existing
nodes in this case (hence Pr(X = 1) = Pr(X = 2) = 0).
Now, given three nodes (n = 3.0), we expand the neighbor set
by calculating Eq. (2):

Pr(X = k) =

(
2.0

k

)(
7.0

2− k

)
/

(
9

2

)
which is approximately 0.58, 0.39, 0.03 for k = 0, 1, 2,
respectively. Thus, ∆n = 0.58 · 2 + 0.39 · 1 + 0.03 · 0 = 1.55.
This step repeats once more, and finally n = 5.76. Therefore,
the expected neighborhood size is |N2| = n− 1 = 4.76.

Fig. 9 shows the expected neighborhood size for different
combinations of |V |, f , and d (the dashed lines represent the
maximum sizes, |Nd|∗). For f = 3 and 5, it quickly converges
to the maximum size as the network size increases. This
indicates that nodes are unlikely to share neighbors because
the network is large enough relative to one’s neighborhood.

B. Finding Network Parameters

Let us consider a sampling of witnesses between two sides, vi
and vj . Without loss of generality, let us assume that the former
is benign and the latter is malicious. Then, the question is what
values the network parameters d and f , i.e., the depth limit
and maximum peerset size, should have so that there are more
benign witnesses than malicious ones with a high probability.

Suppose a node is malicious with probability pm. We can first
consider the case when the malicious group follows the protocol
faithfully, in which case vi and vj would have |Nd

i | · pm and
|Nd

j | · pm malicious nodes in their neighborhoods respectively.
However, because the nodes in Nd

i ∩ Nd
j are excluded, the

effective probability of a node from each side (i.e., Nd
i −Nd

j and
Nd

j − Nd
i) being malicious changes; it increases if we assume

that Nd
i ∩Nd

j consists of as many benign neighbors as possible,
which is the worst-case from the benign side’s perspective.

Below we first find the expected number of common nodes
in two neighborhoods.

Lemma 1. The expected size of Nd
i ∩ Nd

j is

|Nd
i ∩ Nd

j | = |Nd
i ||Nd

j |/(|V | − 1). (3)

101 102 103 104 105

Network size (|V|)

0

10

20

30

40

50

Ex
pe

ct
ed

 n
um

be
r o

f c
om

m
on

 n
od

es

be
tw

ee
n

tw
o

ne
ig

hb
or

 se
ts

= 100
= 70
= 50
= 30
= 10

Fig. 10. Expected number of common nodes between two neighbor sets of
same size λ = |Nd

i | = |Nd
j |).

Proof. Let λx = |Nd
x|, i.e., neighborhood size, for simplicity

of notation. We can view a node vx having λx neighbor
nodes as drawing λx nodes from |V | − 1 nodes. Hence, there
are total

(|V |−1
λi

)(|V |−1
λj

)
ways to have the two neighbor sets

independently. Now, let Y be a random variable representing
the number of common nodes in Nd

i and Nd
j . Suppose total

Y = y nodes are common between them. This can be viewed
as (i) λj nodes are picked first for Nd

j from |V | − 1 nodes, (ii)
among them y nodes are shared with Nd

i , and finally (iii) from
the rest (i.e., |V | − 1− λj), λi − y nodes are drawn to fill Nd

i .
Therefore, the probability that |Nd

i ∩ Nd
j | = y is

Pr(Y = y) =

(|V |−1
λj

)(
λj

y

)(|V |−1−λj

λi−y

)(|V |−1
λi

)(|V |−1
λj

) =

(
λj

y

)(|V |−1−λj

λi−y

)(|V |−1
λi

) ,

which follows the hypergeometric distribution. Hence,

Y = E[Y] =

λi∑
y=0

y · Pr(Y = y) =
λiλj

|V | − 1
.

Fig. 10 shows the expected number of common nodes
between two neighbor sets of the same size λ = |Nd

i | = |Nd
j |.

Larger neighbor sets are likely to share more nodes. But it
diminishes as the network size increases. When the network is
sufficiently large, neighbor sets are likely to be disjoint.

Using the numbers in Figs. 9 and 10, one can estimate
the number of common nodes between two neighborhoods
given the network parameters. For example, for (|V |, f, d) =
(1000, 5, 2), the expected neighborhood size |Nd| is about 30,
in which case any two neighbor sets are expected to share about
0.9 nodes.

Lemma 2. If the neighbor sets of vi and vj satisfy the following
condition, there will be more benign nodes than malicious ones
in a witness group selected uniform-randomly between the two:

pm <
|Nd

i |+ |Nd
j |

2
(|Nd

i |2
|Nd

i |−y
+

|Nd
j |2

|Nd
j |−y

) , (4)

where y is the number of common nodes between them.

Proof. Let λx = |Nd
x|, i.e., neighborhood size, for simplicity of

notation. From the benign side’s point of view, it is the worst-
case when all the common nodes are benign. In this case, the

probability that a node in Nd
i −Nd

j (resp. Nd
j −Nd

i) being mali-
cious is increased to λi

λi−ypm (resp. λj

λj−ypm). Hence, the num-
ber of malicious nodes (resp. benign nodes) selected from vi’s
neighborhood will be αi|W |λipm

λi−y (resp. αi|W |λi(1−pm)−y
λi−y).

Now, to have more benign nodes than malicious ones in a
witness group between the two sides,∑

x∈{i,j}

αx
λx(1− pm)− y

λx − y︸ ︷︷ ︸
benign

>
∑

x∈{i,j}

αx
λxpm
λx − y︸ ︷︷ ︸

malicious

should hold. Because αi =
λi

λi+λj
and αj =

λj

λi+λj
,

pm <
λi + λj

2
(λ2

i

λi−y +
λ2
j

λj−y

) .
Using the results above, we can find proper values for the

network parameters, i.e., peerset size f and depth limit d.

Theorem 1. For an average network in which nodes’ neigh-
borhoods are of similar size |Nd|,

pm <
(
|V | − 1− |Nd|

)
/
(
2(|V | − 1)

)
(5)

should hold to have more benign nodes than malicious nodes
in a witness group.

Proof. Due to Lemma 2, pm <
|Nd|−y

2|Nd|
holds. For an average

network, y = |Nd
i ∩ Nd

j | =
|Nd|2

|V |−1 , due to Lemma 1. Thus

pm <
|Nd| − |Nd

i ∩ Nd
j |

2|Nd|
=

|V | − 1− |Nd|
2(|V | − 1)

.

Given an upper-bound on pm, we can find the depth limit d
and the maximum peerset size f that satisfy Eq. (5). From The-
orem 1, we can see that Eq. (5) may not satisfy if neighborhood
is too large compared to the network size:

Example 3. Suppose |V | = 100 and pm = 25%. By Eq. (5),

|Nd| < (|V | − 1)(1− 2pm) = 49.5

should hold. We can find (f, d) that satisfy the above condition,
from Fig. 9. For instance, |Nd| = 26.46 for (f, d) = (5, 2)
when |V | = 100. However, (f, d) = (5, 3) cannot be used
because |Nd| = 79.13. In this case, most of the nodes in both
neighborhoods are common (thus are excluded from the witness
selection), which leaves very few witness candidates (that are
in Nd

i ∪ Nd
j − Nd

i ∩ Nd
j). Because we assume Nd

i ∩ Nd
j consists

of as many benign neighbors as possible, the probability that
the remaining candidates are malicious increases.

For a very large network, lim|V |→∞ |Nd
i ∩ Nd

j | = 0 due to
Lemma 1, thus the condition in Eq. (5) becomes pm < 1/2.

The second case is when vj and its colluding nodes form a
network of their own by not following the protocol because,
as analyzed in Sec. IV-B, they gain no benefit from having
peer relationship with benign nodes. This network would be

formed only by vj and its colluders, disconnected from the
network of benign nodes (thus Nd

i ∩ Nd
j = ∅). Because all the

witness candidates from vj’s side will be malicious, |Nd
i | >

|Nd
j | should hold for the benign witnesses to be the majority

of a witness group. Given an upper-bound on |Vm| = |V |pm,
i.e., the size of the collusion group, we can find the values for
the network parameters, i.e., d and f , such that the expected
neighborhood size |Nd| is greater than |Vm|. For instance, for
|V | = 1000 and pm = 10%, (f, d) = (5, 2) will not satisfy this
condition as neighborhoods would be too small: |Nd| = 29.63
while |Vm| = 100. The benign side’s neighborhood would be
large enough if (f, d) = (10, 3) or (5, 3).

VI. EVALUATION

We implemented AccountNet as a Python library using
libsodium [23] for digital signature and a fork [24] of it
for an elliptic curve-based verifiable random function. Nodes
use XML-RPC for the AccountNet-specific communication
such as the peer shuffling and the witness group formation.
We deployed the nodes to (up to) 80 virtual machines hosted
on Amazon EC2 t3a.2xlarge instances (8 vcpus, 32 GiB
memory). To impose realistic network latency among the nodes,
we used NetEM tool to add network delay of 20 ms for both
egress and loopback packets. Hence, even the nodes running
on the same VM experience at least about 40 ms of round
trip delay. Table I lists the network parameters. We analyzed
the network every 10 seconds. When we use ’round’ in what
follows, it refers to this analysis round, not the shuffling round.

Nodes are distributed evenly among the VM instances – 125
nodes run on a single VM. In each VM, nodes are launched with
a random interval (uniform from [0, 10] seconds). The launch
rate is the same for all VMs (but the network growth rates
differ). Hence, as can be seen from the left plot in Figure 11,
the network reaches the full size (i.e., specified |V |) at around
similar analysis rounds (about the 70th–75th round).

When launching a node, it is randomly flagged as malicious,
for analysis purposes, with a probability of pm. If |V | = 1000

TABLE I
NETWORK CONFIGURATION PARAMETERS.

Parameter Values
Network size, |V | 500, 1000, 5000, 10000
Maximum peerset size, f 5, 7, 10
Shuffling length, L ⌈f/2⌉
Neighborhood depth limit, d 2, 3
Prob. of malicious node, pm 1%, 10%
Shuffling period 10 seconds (on average)

0 50 100 150 200
Round

102

103

104
Network size

|V|=10000
|V|=5000
|V|=1000
|V|=500

0 50 100 150 200
Round

101

102

103
malicious nodes

|V|=10000
|V|=5000
|V|=1000
|V|=500

0 50 100 150 200
Round

100

101

102

103
#shuffles/second

|V|=10000
|V|=5000
|V|=1000
|V|=500

Fig. 11. Network size, number of malicious nodes (when pm = 0.1), and
shuffling rate. The y-axes are in log scale.

40

60

80

100
Av

er
ag

e
ne

ig
hb

or
ho

od
 si

ze
f=10, d=2

22

24

26

28

30
f=5, d=2

0 50 100 150 200
Round

200
400
600
800

1000

Av
er

ag
e

ne
ig

hb
or

ho
od

 si
ze

f=10, d=3

0 50 100 150 200
Round

50

75

100

125

150
f=5, d=3

Max
|V|=10000
|V|=5000
|V|=1000
|V|=500

Fig. 12. Average neighborhood sizes for different network configurations.

and pm = 10%, the network ends up having about 100
malicious nodes as shown in the middle plot of Fig. 11.
Note again that the malicious nodes could consist of multiple
collusion groups. We view them as a single group for the worst-
case security analysis.

Each node initiates a shuffling every about 10 seconds with
a random variance. When |V | = 10000, approximately 1000
shuffles on average (i.e., shuffling rate = 0.1|V | shuffles/sec)
are expected to occur every second. The right plot in Fig. 11
shows the shuffling rates for different network sizes. Note that
the shuffling period was chosen rather arbitrarily. A shorter
(resp. longer) period can be used, in which case the network
is more (resp. less) reactive to changes in the network (e.g.,
new/leaving nodes).

A. Results

In what follows, we evaluate the impact of different network
configurations (such as the neighborhood depth limit d and the
peerset size f) on the behavior of AccountNet. Appendix A
presents supplementary evaluation results that show the effec-
tiveness of AccountNet’s peer shuffling on peer discovery and
network connectivity.

Average size of neighborhood and common nodes: Fig. 12
shows the average neighborhood sizes for different network

TABLE II
AVERAGE NEIGHBORHOOD SIZE.

f = 10, d = 3 f = 5, d = 2

|V | Analysis Measurement Analysis Measurement
500 446.25 439.19 29.26 29.35
1000 671.97 663.42 29.63 29.67
5000 996.29 991.79 29.93 29.91
10000 1051.10 1048.37 29.96 29.95

TABLE III
AVG. NUMBER OF COMMON NODES BETWEEN NEIGHBORHOODS.

f = 10, d = 3 f = 5, d = 2

|V | Analysis Measurement Analysis Measurement
500 387.98 388.27 1.80 1.85
1000 440.01 449.19 0.90 0.96
5000 196.85 206.00 0.18 0.19
10000 109.84 115.54 0.09 0.10

0 50 100 150 200
0

1

2

3

Depth=1 (direct peer), f=10
|V|=500
|V|=1000
|V|=5000
|V|=10000

0 50 100 150 200
0

1

2

3

Depth=1 (direct peer), f=5
|V|=500
|V|=1000
|V|=5000
|V|=10000

0 50 100 150 200
0

10

20

30

40

no

de
s s

ha
re

d
be

tw
ee

n
tw

o
ne

ig
hb

or
ho

od
s

Depth=2, f=10
|V|=500
|V|=1000
|V|=5000
|V|=10000

0 50 100 150 200
0

10

20

30

40

Depth=2, f=5
|V|=500
|V|=1000
|V|=5000
|V|=10000

0 50 100 150 200
Round

0

100

200

300

400

Depth=3, f=10
|V|=500
|V|=1000
|V|=5000
|V|=10000

0 50 100 150 200
Round

0

100

200

300

400

Depth=3, f=5
|V|=500
|V|=1000
|V|=5000
|V|=10000

Fig. 13. Average number of common nodes in pairs of neighborhoods.

configurations. As discussed in Sec. V, the average neighbor-
hood size highly depends on the peerset size f and the depth
limit d. We can also see that the experimental results match the
analytically computed values, |Nd|, shown in Figure 9.

As explained in Sec. V, nodes shared between two neighbor
sets are excluded when forming a witness group. Fig. 13 shows
the number of nodes shared between the neighborhoods of
every pair. We can see that two neighbor sets are likely to have
more common nodes when the network is small. In addition,
the number of common nodes increases with the neighborhood
depth limit d simply because one’s neighborhood size increases
exponentially with d. For the same depth, nodes are likely to
share more neighbors when the peerset size f is larger. We can
also observe that during the initial rounds, nodes are likely to
share more nodes in their neighborhoods because the peersets
are not sufficiently shuffled. As the plots show, the number of
common nodes drops quickly as the shuffling rounds proceed.
However, the result for d = 3 and f = 10 (i.e., the bottom left
plot), especially of |V | = 500, 1000, shows a different trend.
These are when the neighborhoods are too large relative to
the network size. Hence, the nodes in these cases are likely to
have similar neighbor sets. For instance, for |V | = 500, the
average neighborhood size for d = 3, f = 10 is about 440 as
shown in Table II while the average number of common nodes
in pairs of neighborhoods is close to 390 (shown in Table III).
Because most of the nodes in the neighbor set are shared with
other nodes, such a configuration leaves very few candidates
for a witness, which may affect the witness selection process
as will be shown shortly. Meanwhile, Table III shows that
the analysis in Lemma 1 can accurately estimate the average
number of common nodes between neighborhoods. This result,
in conjunction with Tables II, is one of the indications that the
network behaves uniform-randomly.

f=5,L=3 f=10,L=5 f=10,L=7
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Pr
ob

(n
ei

gh
bo

r i
s m

al
ici

ou
s)

depth=2

f=5,L=3 f=10,L=5 f=10,L=7
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

depth=3

Fig. 14. Prob. of neighbor node being malicious.

: Neighborhood : After excluding common neighbors

Fig. 15. Prob. of witness candidate being malicious (f = 10, d = 3).

Probability of neighbor being malicious: Fig. 14 compares
the probability of a neighbor node being malicious. If the
network behaves uniform-randomly, the average probability
should be close to the specified pm. The left plot compares
the probability distributions for different (f, L) combinations
for |V | = 10000, pm = 10%, and d = 2. We can see that
as the peerset size f and/or the shuffle length L are smaller,
the variance of the distribution is higher (i.e., some nodes have
more/less malicious neighbor nodes than others) because peers
are less-aggressively shuffled when f and/or L are smaller.
When the neighborhood is expanded to d = 3 (the right plot),
the distributions become narrower. These results suggest that
large neighborhoods with aggressive shuffling can reduce the
risk of having an above-average number of malicious neighbors.

Probability of witness candidate being malicious: Recall that
common neighbor nodes are excluded when drawing witnesses.
To see how this affects the distribution of malicious candidates,
we analyzed the snapshots at the 200th round by applying
the witness group formation to every pair of nodes in the
network. Fig. 15 shows that although the average probability
remains the same, the variances become larger after excluding
common neighbors. The case of |V | = 500 shows a potentially
problematic situation: a large variance in the population of
malicious candidates. This happens because nodes share too
many neighbors – according to Tables II and III, the average
neighborhood size is 440, but about 390 of them are shared with
another neighborhood. This result suggests that neighborhoods
should not be too large relative to the network size.

Effective shuffle history length: As explained in Sec. IV,
nodes exchange their peerset update histories to prove the
correctness of their current peersets. Because of shuffling, nodes
need to exchange only a part of the history that is long enough
for the proof. Hence, we measured the length of peerset update
history that nodes exchange when shuffling peers. Fig. 16

2 4 6 8 10 12 14 16
Length of effective peerset-update history

(a) f=5,L=3
|V|=1000

(b) f=10,L=5
|V|=1000

(c) f=5,L=3
|V|=10000

(d) f=10,L=5
|V|=10000

(e) f=10,L=7
|V|=10000

Fig. 16. Lengths of effective peerset update history.

150 200 250 300
Round

26

27

28

29

30

31

Av
er

ag
e

ne
ig

hb
or

ho
od

 si
ze

f=5, d=2

200 250 300
Round

95

100

105

110

f=10, d=2

150 200 250 300
Round

130

135

140

145

150

155

160
f=5, d=3

200 250 300
Round

875

900

925

950

975

1000

1025

1050

1075

f=10, d=3

Fig. 17. Average neighborhood sizes when 1000 out of 10000 nodes leave.

compares the distribution obtained from snapshots when the
networks are in the steady state. Comparing (a) and (b) (or (c)
and (d)), we can first see that nodes need to send longer lists of
peerset update records when the peerset size (f) is large. Now,
comparing (d) and (e), a higher L (i.e., the shuffle length) leads
to shorter history length because peersets change aggressively,
and thus peers are unlikely to stay for long periods – e.g.,
when f = 10 and L = 7, the probability that a peer stays
for 4 consecutive shuffling rounds is less than 1%. Overall, the
effective history is kept short, hence nodes do not need to send
a long list of entries.
Network churn: To see how AccountNet behaves when nodes
leave the network, we performed a network churn. Specifically,
from about the 200th round, 10% of the network nodes (which
are randomly selected) start leaving the network ungracefully.
Fig. 17 shows that when nodes are actively leaving, the average
neighborhood sizes dip below what can be analytically com-
puted. For instance, for f = 10 and d = 3, it drops to as low
as 1007.67 at the 250th round. It is about 3.28% less than what
it should be for the network size (|V | = 9000). Hence, when
determining the network parameters, the average neighborhood
size should be estimated with a margin to cope with network
churn. Nevertheless, we can see that the network quickly self-
organizes after the churn. Note that because the nodes left

Fig. 18. Probability that a neighbor (top plots) or a remaining candidate (bottom
plots) is malicious when 1000 out of 10000 nodes leave. f = 10.

Scene
Recognition

Publish

Publish

[obj1:[label,confidence,
boundingbox], obj2:[...], ...]

Subscribe

Subscribe

Fig. 19. Cloud-based ML service over AccountNet.

without notifying any others, one’s leaving is discovered only
when it is selected by another node as a shuffling counterpart.
Discovery of inactive nodes can be made faster by an active
ping [11] or using a shorter shuffling period. Meanwhile,
Fig. 18 shows the probability distribution of (top) a neighbor
node or (bottom) a witness candidate being malicious. The
results show no statistically significant impact of network churn
on them, and the trends are consistent with Figs. 14 and 15.

B. Use Case: Cloud-based ML Service

We implemented a broker-less publish-subscribe communica-
tion layer on top of AccountNet and applied it to a cloud-based
ML inference service – a robotic ground vehicle outsources
an object detection task to the cloud service as shown in
Fig. 19. In this architecture, nodes publish data messages to
topics (e.g., scene_image) that identify the content of data
and subscribe to topics relevant to their tasks. The vehicle-
side node publishes scene images, captured by a front-facing
camera, to topic scene_image. The cloud-side node, which
subscribes to the topic, utilizes an ML service [1] to detect
objects in a given scene image. Then, it publishes the detection
results (e.g., object labels, confidence levels, locations, etc.) to
detected_objects topic. Note again that in AccountNet,
nodes act as publisher, subscriber, witness, or all of them.

How should the network be configured to prevent a malicious
node in this application from manipulating evidence about
scene images or the results of object detection? Suppose the
network consists of |V | = 1000 nodes and assume the online
ML service is ill-intentioned and thus is in collusion with 99
other nodes (i.e., pm = 10%). As analyzed in Sec. IV-B, the
collusion group has two choices: (i) following the AccountNet
protocol correctly (but act maliciously when relaying data) or
(ii) forming a separate network of their own. In the former case,
the network should not have too big neighborhoods because
otherwise, most of the benign witness candidates could be
excluded. For the configuration given above, we can find, using
Eq. (5) in Sec. V-B, that any (f, d) pairs that make the average
neighborhood size not larger than 799.2 can be used. According
to Fig. 12, (f, d) = (5, 2), (5, 3), (10, 2), (10, 3), etc. satisfy
the condition. Now, suppose instead that the malicious group
did not want to follow the AccountNet protocol and thus
has formed a separate overlay. In this case, all the witness
candidates from the ML service-side will be malicious. Hence,
the benign network should be able to make average-case
neighborhoods large enough that they outnumber the malicious
group. According to Fig. 12, the average neighborhood size
would be slightly above 100 with (f, d) = (10, 2). But as
seen above it can shrink when there is network churn. Hence,
considering a safe margin, (f, d) = (10, 2) should not be

0 200 400 600 800 1000
Time (ms)

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

(a) Round-trip network time (=(b) - ML inference time)
|W| = 0 (mean=130.41)
|W| = 3 (mean=470.52)
|W| = 9 (mean=621.72)
|W| = 9 with opt. (mean=444.60)

0 500 1000 1500 2000
Time (ms)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

(b) End-to-end latency
|W| = 0 (mean=939.11)
|W| = 3 (mean=1280.97)
|W| = 9 (mean=1408.68)
|W| = 9 w/ opt. (mean=1225.60)

Fig. 20. Latency of the cloud-based object detection application using
AccountNet. Notice the difference in the x-axis scales.

used. However, with (f, d) = (10, 3) or (5, 3), benign nodes
would likely have much larger neighborhoods than the collusion
group would. Hence, more benign witnesses will be selected
than malicious ones when the network is configured with
(f, d) = (10, 3) or (5, 3).

For an overhead evaluation purpose, we ran 1000 nodes on
8 × EC2 instances that form AccountNet. Then, we measured
the end-to-end latency of the object detection application that
runs on top of it. Fig. 20(b) compares the end-to-end latency
for different sizes of witness group. It is measured from when
the vehicle node publishes a scene image to when it receives a
detection result. Hence it includes the ML service’s inference
time, which is about 809 ms on average but highly varying:
σ = 191 ms, although we fixed the scene image to a single 2010
x 1125 resolution file to reduce the variance. Fig. 20(a) shows
the round-trip time that does not include the ML inference
time. The latency increases with AccountNet simply because
of data relay through the witness nodes. However such an
overhead can be masked to some extent, as can be seen from
Fig. 20(b), by the ML inference service of which execution
time is relatively long and highly varying. Meanwhile, in the
original implementation, data is delivered up to the subscriber’s
application layer once the relayed data are received from all
witnesses. However, one can improve the latency by moving
up the data as soon as identical data have been received from
more than |W |/2 witnesses. We implemented this optimization,
which reduced the relay overhead considerably as shown in
Fig. 20 (‘with opt.’).

VII. RELATED WORK

Peer-to-peer (P2P) overlay allows systems across wide area
networks to distribute data in a fault-tolerant, scalable, and
self-organizing way [25]. P2P overlay can be categorized into
two classes: structured and unstructured. In structured overlays
[15]–[17], peer relationship is deterministic as it is derived
from node identifiers such as IP address. On the other hand in
unstructured overlays [19], [20], peer relationship is probabilis-
tic. In gossip-based peer sampling [13], [14], [21], each node
maintains a set of peers and keeps it updated by periodically
exchanging (i.e., shuffling) the information with others in a
random fashion.

Although structured overlays enable efficient data search and
retrieval, they are vulnerable to Eclipse attacks; a group of
malicious nodes tries to pollute a victim’s routing table, which
could lead to network partitioning and denial of service attacks.
Castro et al. [3] defend against Eclipse attacks by entrusting

a set of trusted certification authorities to assign IDs to nodes.
In [18], Singh et al. have nodes audit each other’s peer set and
refuse to have a peer relationship with a node whose degree is
significantly above the average. Hildrum et al. [26] propose a
proximity neighbor selection mechanism that considers network
latency to prevent a small set of malicious nodes from becoming
neighbors of a large number of benign nodes. Fireflies [11]
provides each node with a full view of live nodes in the network
using an accusation-rebuttal process.

In unstructured overlays, Eclipse attacks target to fool benign
nodes into having malicious nodes as their peers, to isolate the
victim from the rest of the network. PuppetCast [10] employs
trusted, central bootstrap servers that hand out random samples
of peers to new nodes by maintaining a complete membership
of the network. Jesi et al. [27], sharing a similar idea as [18],
consider ‘hub’ nodes, who have large in-degree values and
thus are over-represented in the views of other nodes, thus
potentially malicious. In BAR gossip [8], a node uses a pseudo-
random number generation to select a partner from its peers for
exchanging data (e.g., video stream packets). The partner can
verify if the random partner selection was unbiased. But this
requires a strong assumption that the full membership view is
known to every node and that no node can join or leave.

The P2P nature of blockchains makes them vulnerable to
Eclipse attacks. Heilman et al. [4] were able to pollute a Bitcoin
node’s address tables by repeatedly sending unsolicited incom-
ing connections. They proposed countermeasures that include
random eviction and selection of peer connections, increasing
the peerset size, detecting peers with abnormal connection size,
etc. Marcus et al. [28] showed Eclipse attacks on Ethereum
nodes running on a structured overlay, Kademlia [29], and
proposed similar countermeasures. Nevertheless, even with the
countermeasures, Eclipse attacks are still possible when a mas-
sive number of Sybil identities can be created [30]. As can be
seen, most of these works either (a) entrust trusted authorities to
manage full node membership or (b) use heuristics (e.g., node
degree) to detect potentially malicious peers. AccountNet does
require neither any central entity nor full node membership.

Accountability has been studied mostly in the context of
detecting faulty nodes in distributed applications. In PeerRe-
view [31], each node creates logs of messages that it sent/re-
ceived, which are used by ‘witnesses’ to determine whether the
node deviated from the correct behavior. They are selected from
other nodes in a structured manner [32]. However, they assume
that at least one witness in a group is correct. FullReview [33]
considers selfish witnesses who are tempted not to act as
monitors. They use a game theoretic approach that incentivizes
selfish witnesses to follow the monitoring protocol. However,
both PeerReview and FullReview require an assumption that a
reference implementation for the node being monitored exists
so that monitor nodes can replay and check the logs.

VIII. CONCLUSION

AccountNet is a peer-to-peer overlay in which the par-
ticipants act as witnesses to data propagation between oth-
ers. With AccountNet’s verifiable peer shuffling, a malicious
group of nodes has to either follow the protocol faithfully
or form a separate network of their own. In either case,

the uniform-randomness of the benign nodes’ peer shuffling
guarantees, probabilistically, that witness groups contain more
honest witnesses than malicious ones, which we showed both
analytically and experimentally. Systems that want to create
provable evidence of their correct behavior can benefit from
AccountNet by following its protocol faithfully.

ACKNOWLEDGMENT

This work is supported in part by NSF grant 2302610.
Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily
reflect the views of sponsors.

REFERENCES

[1] “Amazon rekognition,” https://aws.amazon.com/rekognition/.
[2] “Azure Cognitive Services,” https://azure.microsoft.com/en-us/services/

cognitive-services/.
[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,

“Secure routing for structured peer-to-peer overlay networks,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp. 299–314, 2002.

[4] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in Proc. of the 24th USENIX Conference
on Security Symposium, 2015, p. 129–144.

[5] J. Kuffner, “Cloud-enabled humanoid robots,” in Proc. of the 10th IEEE-
RAS International Conference on Humanoid Robots, 2010.

[6] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on automation
science and engineering, vol. 12, no. 2, pp. 398–409, 2015.

[7] J. R. Douceur, “The sybil attack,” in Proc. of the 1st International
Workshop on Peer-to-Peer Systems, 2002, p. 251–260.

[8] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “Bar gossip,” in Proc. of the 7th symposium on Operating
systems design and implementation, 2006, pp. 191–204.

[9] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” in Proc. of the 27th
ACM Symposium on Principles of Distributed Computing, 2008.

[10] A. Bakker and M. van Steen, “Puppetcast: A secure peer sampling
protocol,” in European Conference on Computer Network Defense, 2008.

[11] H. Johansen, A. Allavena, and R. van Renesse, “Fireflies: Scalable support
for intrusion-tolerant network overlays,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 4, p. 3–13, Apr. 2006.

[12] N. Borisov, “Computational puzzles as sybil defenses,” in Proc. of the
6th IEEE International Conference on Peer-to-Peer Computing, 2006.

[13] A. Allavena, A. Demers, and J. E. Hopcroft, “Correctness of a gossip
based membership protocol,” in Proc. of the 24th ACM Symposium on
Principles of Distributed Computing, 2005, p. 292–301.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst., vol. 25,
no. 3, p. 8–es, Aug. 2007.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
the IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, 2001, pp. 329–350.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
protocol for internet applications,” vol. 11, no. 1, 2003, p. 17–32.

[17] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: a resilient global-scale overlay for service deployment,” IEEE
Journal on Selected Areas in Communications, no. 1, pp. 41–53, 2004.

[18] A. Singh, T. wan “Johnny” Ngan, P. Druschel, and D. S. Wallach, “Eclipse
attacks on overlay networks: Threats and defenses,” in Proc. of the 25th
IEEE International Conference on Computer Communications, 2006.

[19] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” in Proc. of the
International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, 2001.

[20] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in
Proc. of the 1st International Conference on Peer-to-Peer Computing,
2001.

[21] S. Voulgaris, D. Gavidia, and M. V. Steen, “Cyclon: Inexpensive mem-
bership management for unstructured p2p overlays,” Journal of Network
and Systems Management, vol. 13, pp. 197–217, 2005.

https://aws.amazon.com/rekognition/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/

[22] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Proc. of the 40th Annual Symposium on Foundations of Computer Science,
1999.

[23] https://doc.libsodium.org/.
[24] https://github.com/algorand/libsodium.
[25] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and

comparison of peer-to-peer overlay network schemes,” IEEE Communi-
cations Surveys Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[26] K. Hildrum and J. Kubiatowicz, “Asymptotically efficient approaches to
fault-tolerance in peer-to-peer networks,” in Distributed Computing, F. E.
Fich, Ed. Springer Berlin Heidelberg, 2003, pp. 321–336.

[27] G. P. Jesi, A. Montresor, and M. van Steen, “Secure peer sampling,”
Computer Networks, vol. 54, no. 12, pp. 2086–2098, 2010.

[28] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on ethereum’s peer-to-peer network,” IACR Cryptol. ePrint Arch., 2018.

[29] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information
system based on the xor metric,” in Peer-to-Peer Systems. Springer Berlin
Heidelberg, 2002, pp. 53–65.

[30] M. Tran, A. Shenoi, and M. S. Kang, “On the routing-aware peering
against network-eclipse attacks in bitcoin,” in Proc. of the 30th USENIX
Security Symposium, 2021, pp. 1253–1270.

[31] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: Practical
accountability for distributed systems,” in Proc. of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, 2007.

[32] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. of the
29th Annual ACM Symposium on Theory of Computing, 1997.

[33] A. Diarra, S. B. Mokhtar, P.-L. Aublin, and V. Quéma, “Fullreview:
Practical accountability in presence of selfish nodes,” in Proc. of the 33rd
IEEE International Symposium on Reliable Distributed Systems, 2014.

[34] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

APPENDIX A
SUPPLEMENTARY EVALUATION RESULTS

Peer coverage: Nodes discover new peers as they shuffle their
peersets with others. We analyzed how many distinct nodes
that each node in the network ends up seeing as peers (at
least once). Let us call this metric ‘peer coverage.’ Fig. 21
shows the distribution of the coverages over time for different
network configurations. As shown in the figure, nodes discover
new peers faster when having a larger peerset (i.e., higher f).
For a small network (|V | = 500), most of the nodes in the
network quickly end up seeing most of the other nodes. For a

0 25 50 75 100 125 150 175 200
0

200

400

Network size
|V|=500, f=10, L=5
|V|=500, f=5, L=3

0 25 50 75 100 125 150 175 200
0

2500

5000

7500

10000

Nu
m

be
r o

f s
ee

n
no

de
s

Network size
|V|=10000, f=10, L=7
|V|=10000, f=10, L=5
|V|=10000, f=5, L=3

0 25 50 75 100 125 150 175 200
Round

0

500

1000
|V|=10000, f=10
|V|=5000, f=10
|V|=1000, f=10
|V|=500, f=10

Fig. 21. Number of nodes seen as peers.

0 50 100 150 200
0

2

4

6

8

10

Ne
tw

or
k

di
am

et
er

f=10
|V|=10000
|V|=5000
|V|=1000
|V|=500

0 50 100 150 200
0

2

4

6

8

10
f=5

|V|=10000
|V|=5000
|V|=1000
|V|=500

0 50 100 150 200
Round

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

clu
st

er
in

g
co

ef
fic

ie
nt |V|=10000

|V|=5000
|V|=1000
|V|=500

0 50 100 150 200
Round

0.0

0.1

0.2

0.3

0.4 |V|=10000
|V|=5000
|V|=1000
|V|=500

Fig. 22. Network diameter and clustering coefficient.

larger network (|V | = 10000), which is shown in the middle
plot, it takes longer for the network to reach the full coverage.
However, this does not indicate that nodes discover fewer
unseen peers. The bottom plot in Fig. 21 compares the average
coverage for different network sizes. The coverage-growth rate
is in fact higher for a larger-size network because a shuffling
is likely to discover more unseen peers when compared to a
smaller network. Meanwhile, the shuffle length (L) also affects
the coverage. As shown in the middle plot, the coverage grows
faster if nodes shuffle peers aggressively (i.e., higher L) when
the peerset size is same.

Network structure: One set of metrics that can represent the
effectiveness of peer shuffling is the network diameter and
the clustering coefficient. The diameter of a network is the
maximum distance from a node to all others. The clustering
coefficient [34] represents the tendency of a node’s peers being
a clique – the value of 1 indicates that every peer of a node is
also connected to each other and that of 0 means that the peers
are not connected to each other. As the network size increases,
the diameter is likely to increase while the average clustering
coefficient is likely to decrease. The latter could be high if peer
selection is biased. Hence, a well-shuffled network is desired
to keep these two values small. Fig. 22 shows how the network
configurations affect these metrics. As can be seen from the
top plots, the diameter is kept small even for larger networks.
When the network size is same, a smaller f (i.e., peerset size)
leads to larger diameter. For a small network (e.g., |V | = 500),
the neighborhood of any node would be as large as the entire
network even with a relatively small depth limit (e.g., d = 3).
The bottom plots compare the average clustering coefficients
for different configurations. As the peerset size f increases
and/or the network size |V | decreases, the coefficient naturally
increases because the chance that two peers of a node could
be in a peer relation also increases. Nevertheless, the average
clustering coefficients converge quickly as the nodes join and
perform peerset shufflings and are kept small.

https://doc.libsodium.org/
https://github.com/algorand/libsodium

	Introduction
	Problem Statement and Models
	Motivating Scenario
	Problem Description
	Can Digital Signatures Solve the Problem?
	System and Adversary Models

	Overview of AccountNet
	Verifiable Peer Shuffling
	Protocol Detail
	Security Analysis

	Witness Group Formation
	Neighborhood Size
	Finding Network Parameters

	Evaluation
	Results
	Use Case: Cloud-based ML Service

	Related Work
	Conclusion
	References
	Appendix A: Supplementary Evaluation Results

