WhisperMQTT: Lightweight Secure Communication
Scheme for Subscription-Heavy MQTT Network

Youbin Kim and Man-Ki Yoon

Department of Computer Science

North Carolina State University
Raleigh, NC, USA

Abstract—The Message Queuing Telemetry Transport (MQTT)
protocol is widely used for communication in machine-to-
machine (M2M) and Internet of Things (IoT) systems due to
its lightweight publish-subscribe model. Although MQTT can be
secured with Transport Layer Security (TLS), this introduces
significant computational overhead on the message broker. We
demonstrate that this overhead becomes unnecessarily high in
subscription-heavy networks, where a single message must be
encrypted individually for each subscriber. To address this issue,
we present WHISPERMQTT, a solution designed to optimize
the encryption process in MQTT brokers. Our approach utilizes
both TLS and non-TLS connections with subscribers: the TLS
channel is used to securely distribute a per-topic decryption key,
while the encrypted payload is transmitted over the non-TLS
connection. This allows the broker to encrypt each topic message
only once, irrespective of the number of subscribers, which
reduces processing overhead and enhances both latency and
throughput. Importantly, WHISPERMQTT integrates seamlessly
with the MQTT protocol and applications without requiring any
modifications.

I. INTRODUCTION

Message Queuing Telemetry Transport (MQTT) [1] is a
lightweight protocol for machine-to-machine (M2M) commu-
nication and Internet of Things (IoT). To support efficient
communication, MQTT uses the publish-subscribe (pub-sub)
model, which enhances both scalability and reliability. In
this model, devices (clients) interact through a central broker
that acts as a mediator, routing data transmissions based on
specific topics of interest for clients. This topic-based approach
enables the broker to distribute messages from the publisher
to subscribers. Using this decoupled model allows devices to
operate asynchronously and independently without needing to
be aware of each other.

MQTT operates over the Transmission Control Protocol
(TCP) transport by default, but TCP alone does not provide
inherent security. To enhance security, both the broker and
MQTT clients can use Transport Layer Security (TLS) [2],
which is supported by most mainstream broker libraries [3]-
[6]. TLS is a secure networking protocol that ensures data
confidentiality, integrity, and authentication over networks. As
a result, it has become the dominant secure networking pro-
tocol for a wide range of applications, including web services
[7], messaging [1], media streaming [8], and cloud storage
[9]. When integrated with MQTT, TLS establishes a secure
connection between the broker and its clients. This approach is
commonly used because TLS provides a variety of encryption

algorithms [10], key exchange methods, and authentication
mechanisms that are suitable for secure communication across
different network environments.

Although TLS provides security benefits, it introduces sig-
nificant computational overhead for the broker, as it must
decrypt messages from publishers and encrypt messages for
subscribers. The decryption process is a fixed-cost operation
with limited optimization opportunities (aside from not using
TLS), as each topic is published by a single publisher in a
single message. However, encrypting messages for subscribers
can be more costly for the broker because MQTT typically
follows a one-to-many communication pattern: one publisher
and multiple subscribers. This overhead becomes especially
significant in subscription-heavy networks, where a large num-
ber of subscribers are associated with a single topic. In such
cases, the broker must encrypt the same message individually
for each subscriber.

Drawing on the insights from the above observations, we
propose WHISPERMQTT, a solution that eliminates redun-
dancy in the encryption operations for subscribers. It estab-
lishes both TLS and non-TLS connections between the broker
and subscribers simultaneously. The TLS channel is used to
distribute a per-topic encryption key to the subscribers, ensur-
ing the same level of security as traditional TLS-based MQTT,
while the actual encrypted data is transmitted through the
non-TLS channel. Hence, the broker performs encryption only
once per message, regardless of the number of subscribers. By
encrypting just once, WHISPERMQTT significantly reduces
the broker’s computational overhead, leading to lower latency
and higher throughput. Most importantly, WHISPERMQTT
does not require any modification to the MQTT protocol and
applications. We implement WHISPERMQTT in the popular
Mosquitto MQTT broker [3] and the Paho MQTT client
library [11]. We evaluate the performance of WHISPERMQTT
through a set of experiments and demonstrate that it can reduce
the latency overhead of the broker’s publication process by
10% to 50% compared to standard TLS-based MQTT com-
munication depending on the payload sizes and the number of
subscribers.

In summary, we make the following contributions in this
paper:

« We show that the MQTT communication in subscription-
heavy networks can lead to significant computational

overhead on the broker when using standard TLS-based
message distribution;

e We propose WHISPERMQTT, a novel approach that
combines the benefits of TLS with non-TLS connections
to optimize the encryption process in MQTT brokers for
subscription-heavy networks; and

o We assess both the performance benefits and overhead
of WHISPERMQTT compared to non-secure and stan-
dard TLS-based MQTT communication approaches by
implementing it in open-source MQTT broker and client
libraries.

II. PROBLEM DESCRIPTION
A. System and Threat Models

We consider a network of nodes that communicate using
the MQTT protocol. We assume that nodes can join and leave
the network at arbitrary times. A node can publish messages
to one or more topics. Similarly, a node can subscribe to one
or more topics it is interested in. In the MQTT protocol, a
central broker is responsible for routing messages between
publishers and subscribers. While this paper focuses on a
single broker for simplicity, the proposed solution can be
extended to support bridged brokers.

We also assume that (i) each node, including the broker,
can generate a public and private key pair, (ii) the keys are
accompanied by a verifiable certificate, and (iii) a standard
security mechanism is in place to protect the private key
in each node. The public-private key pairs and certificates
are used to authenticate nodes to each other during the TLS
handshake.

Let epey(-) and dyey(-) denote the encryption and de-
cryption functions, respectively, using a symmetric key key.
Note that TLS uses symmetric key encryption to ensure the
confidentiality and integrity of data transmitted between a
client and a server during a session. Given a symmetric key
used to encrypt an MQTT payload, anyone can decrypt it. We
do not consider such a scenario where the symmetric key is
exposed to nodes that are not subscribed to the topic of the
encrypted data, as it represents an obvious and fundamental
security breach. Hence, a node cannot decrypt an MQTT
payload without subscribing to the topic through the broker.
We also require a key revocation mechanism to prevent former
subscribers from decrypting encrypted MQTT payload after
their departure.

B. Motivational Scenario

Consider a camera positioned along a road that captures
real-time footage of traffic for various purposes. Instead of
operating a separate camera for each application, the system
employs a pub-sub model like MQTT to share the real-time
footage among multiple applications. In this scenario, the
camera acts as a publisher, while subscribers include various
vision-based applications. For example, the system could allow
traffic control centers to monitor and manage traffic signals and
flow, respond to accidents, detect speeding and traffic signal
violations, and more. It could also enable law enforcement

to identify and track suspects, detect suspicious activities,
and conduct surveillance. However, the sensitive nature of
these data necessitates encryption to ensure confidentiality and
integrity, which poses a challenge due to the often large size
of such data.

C. Problem Statement

While TLS ensures data confidentiality and integrity, it
comes at the expense of additional computational load due
to the handshake process, message encryption/decryption, and
computation of the message authentication code. As a result,
using TLS can lead to increased latency compared to unen-
crypted communication. From the broker’s perspective, the
major overhead lies in encrypting the same MQTT payload
with different TLS sessions keys for each subscriber of the
same topic. To illustrate the impact of this overhead on the
broker, we consider a scenario where a large payload is
published to multiple subscribers and measure the time taken
by the broker to handle a single publication, starting from the
moment the data is received from the publisher until it is sent
out to all subscribers. The experimental setup is detailed in
Section IV-A.

Fig. 1 compares the average latency incurred by the broker
when sending 3 MB of data to all subscribers using TLS versus
non-TLS. The x-axis represents the number of subscribers,
while the y-axis shows the average latency in milliseconds
(ms). As depicted, the results show a significant increase in
the broker’s overhead with TLS compared to non-TLS, with
the overhead growing more pronounced as the number of
subscribers to the same topic increases; e.g., the average time
for 10 subscribers with TLS is 33.29 ms, more than twice the
12.87 ms observed with non-TLS.

Building on the above observation, we aim to design a
communication scheme that ensures the broker’s overhead for
publishing to multiple subscribers of the same topic scales
moderately with the number of subscribers, as seen with
non-TLS, while preserving data confidentiality, integrity, and
authenticity equivalent to TLS.

Payload Size: 3 MB

35
5. EEE Non-TLS i
TLS

Broker's Latency (ms)
5 & 3

vl

L B
*r 3 5 7 10

Number of Subscribers

Fig. 1: The average time taken by the broker to send out 3
MB of data to all subscribers.

Subscriber 1
’ dJ\zf\[(-)=
\//
&¢ 529"‘\0
o RS
e Subscriber 2
ey (N)= I
Data = dypy, (0)= ER
lien 0o [Data s ey ()
Topic X e
&
&
%
Broker <%@ QJ
SRNED

Subscriber N

dkeyN(-)=

(a) Standard TLS-based Publication

Subscriber 1
dyey:1 (@)= key
dyery (I)= EB

Subscriber 2
ML ey, (W)= key
—_— Data " @y ﬁ =
Publish to R \d,., (mm)=
Topic X key

Broker :
Subscriber N

d/ceyN(.)= kl.’y
dicey ()=

(b) Proposed Solution (TLS for key, non-TLS for encrypted data)

Fig. 2: Secure MQTT communication using (a) TLS to encrypt messages for each channel, and (b) our proposed solution,
WHISPERMQTT, that encrypts the message only once using a single key and distributes the key over TLS channels.

Application
0 client.subscribe(‘topicX’)

subscribe(‘topicX/key’) "
Subscriber
TLS channel A
Broker Client
subscribe(‘topicX”) Library

e Non-TLS channel

Application Callback for
"topicX’ Topic

Decrypted
Payload o

e Key (once)
Store
2f1f2cdc2aaab5db3dda8395a72f4942
[ol
TLS channel Payload
Broker Decryption
6e7ee9. c40b76 and MAC
Non-TLS channel

Verification

Encrypted payload w/ nonce and MAC

Subscriber Client Library

Fig. 3: (Left) Subscriber creates a subscription to the key topic and the data topic. (Right) Subscriber decrypts the encrypted
payload using the decryption key that was sent over the TLS channel.

III. WHISPERMQTT DESIGN AND IMPLEMENTATION
A. High-level Idea

Fig. 2 illustrates the high-level idea of WHISPERMQTT, as
shown in (b), and how it contrasts with the standard TLS-
based subscription depicted in (a). As briefly discussed in
Section I, the overhead imposed by TLS on the MQTT broker
arises from encrypting the same message separately for each
subscriber. Specifically, each subscriber connects through a
different TLS session, and the message transmitted over each
session is encrypted individually using a session-specific key.
Consequently, the same message is encrypted N times for
the N subscribers. As the number of subscribers grows, the
need to repeatedly encrypt the same data leads to substantial
overhead for the broker.

To address this problem, WHISPERMQTT removes the
redundancy by shifting the encryption process to the broker
layer, as illustrated in Fig. 2(b). Since the broker knows that all
subscribers of a given topic should receive the same message,
it can encrypt the message once with a single key rather than
using separate keys for each subscriber. This single key is
then distributed to the subscribers through their individual TLS
channels (i.e., the dashed blue lines in (b)). The overhead of

key distribution is minimal, as the key is typically very small
(e.g., 32 bytes) and requires infrequent updates. Thus, the
encryption overhead for publishing a message to subscribers
becomes independent of the number of subscribers; only
the total transmission time increases with the number of
subscribers, which is unavoidable.

B. Protocol Detail

In what follows, we describe the WHISPERMQTT proto-
col in detail for each network participant and explain how
a subscription-heavy MQTT network can benefit from this
protocol.

1) Publisher: No modifications are required for publishers;
they can publish messages to the broker as usual. This is due
to the decoupling between publishers and subscribers in the
pub-sub communication model.

2) Subscriber: As explained earlier, the key idea of WHIS-
PERMQTT is to distribute the decryption key via a TLS
channel and the encrypted data via a non-TLS channel. This
approach allows the broker to encrypt the data only once,
no matter how many subscribers are subscribed to the topic,
and distribute the encrypted data to all subscribers. For this,

(CropicP }-»{@=] Generate
e (opic_}-»{@m] if not exist

Nonce
Generator

T

Topi ; ublish(‘topicX/key’)
_-Oplc -Topic)(-»io- Key o P P Y .
Publisher @ oublish(topicx’) [_}f@ TLS channel To subscribers of
. publish(‘topic TopicZ }- ‘ RN
(;Ilent Encrypt & © publish(‘topicx’) topicX
Library Compute
Payload e Non-TLS channel

MAC

Broker

Fig. 4: WHISPERMQTT broker’s operations. For each incoming message, the broker encrypts it using a per-topic key and
sends the encrypted data over non-TLS channels, while the key is distributed (when created or updated) over TLS channels.

the subscriber subscribes to the key topic and the data topic.
Fig. 3 (left) illustrates the subscription process for a subscriber.
The subscriber application is not aware of the dual channel
communication; it simply requests the client library to sub-
scribe to a topic, e.g., ' topicX’. Then the client library
sends two subscription requests to the broker: one for the
key topic, topicX/key’, and the other for the data itself,
"topicX’.

Then, as shown on the right-hand side of Fig. 3, the
broker sends the decryption key to the subscriber via the
key topic, which is encrypted using the TLS session key
(this process is transparent to both the broker and the client
library). The key is not sent again for the same topic unless
it needs to be revoked and regenerated (e.g., when one of the
subscribers for the topic leaves the network). The subscriber’s
client library stores the key internally and uses it to decrypt
all future encrypted payloads received from the broker. For
each encrypted data received over the non-TLS channel, the
subscriber’s client library verifies the data’s integrity using
the message authentication code (MAC) sent along with the
encrypted payload and then decrypts it using the stored key.
Upon successful verification and decryption, the decrypted
payload is delivered to the subscriber application’s callback
function as if it were a regular MQTT message.

3) Broker: Fig. 4 and Algorithm 1 illustrate the operations
of the WHISPERMQTT broker:

1) A publisher sends a message to the broker.

2) Lines 2-7: The broker first looks up the topic to find the
corresponding encryption key. If the key does not exist
(i.e., the topic is new), the broker generates a new key
for the topic, distributes it to all subscribers over TLS
channels (TLSPublish), and stores it in a key-value store.

3) Lines 9-10: Whether the key is pre-existing or newly
generated, the broker encrypts the original payload using
the key and a random nonce (e.g., an Initialization Vector
in the case of AES-GCM) and computes the message
authentication code.

4) Lines 11-12: The broker then replaces the original pay-
load with the encrypted payload, nonce, and message
authentication code, as shown in Fig. 5. Finally, the

Algorithm 1 WhisperPublish (topic, payload) (See Fig. 4
and Fig. 5

1: Input: Topic and unencrypted payload

key < FindKey(topic) {See Algorithm 2}

if key is NULL then
{Key does not exist — generate and publish one}
key < RAND(KEY_SIZE)
Insert the topic — key mapping to hash table
TLSPublish(topic+ ‘/key’, key)

end if

9: nonce < RAND(NONCE_SIZE)

10: (encData, M AC) < Encrypt(key, payload, nonce)
11: newPayload < encDatalnonce| M AC

12: NonTLSPublish(topic, newPayload)

[SI o)

A A

L
L

Control | Remaining | Topic | Topic \
Field | Length =1; | Length [Name Plaintext Payload
Fixed Variable
Header Header ‘
I : Replaced by Broker Appended by Broker
Control | Remaining | Topic | Topic
Field | Length =1, | Length | Name Encrypted Payload Nonce MAC

[t)

T
l, = 1y + size(Nonce) + size(MAC)

Fig. 5: WHISPERMQTT broker’s payload encryption.

broker sends this data to all subscribers of the topic over
non-TLS channels (NonTLSPublish).

Note that the topic key is distributed (i.e., published) to all
subscribers only when it is (re)generated. Hence, the broker
retains the key for future subscribers who join the network.
This can be done by setting the RETAIN bit [12] of the key
topic message to true. Conversely, when an existing subscriber
leaves the network or simply unsubscribes, the broker revokes
the key and generates a new one for the topic, as shown
in Fig. 6. The new key is then distributed to all remaining
subscribers of the topic over their TLS channels. This process
ensures that former subscribers cannot decrypt the encrypted
data after unsubscribing, even if they gain access to it after

e publish(‘topicX/key’)

((topicr_}-->{@m) Subscriber
G o)
; Regenerate Subscriber
opic ! e NSUBSCRIge Subscrib l-|» Leaving
\ “topicx: the
=)@ picx » e
Subscriber
Broker

Fig. 6: Decryption key is regenerated and distributed to sub-
scribers when a subscriber leaves the network or unsubscribes.

leaving the network. Note that, although small, there are
overheads involved in key generation and distribution. Hence,
a malicious node may attempt to repeatedly join and leave
the network to launch a denial-of-service attack against the
broker. To mitigate this, the broker can impose a rate limit on
the number of key updates per topic or blacklist the node if it
exhibits such behavior.

C. Implementation-Specific Details

Cryptographic Algorithm. For the implementation of WHIS-
PERMQTT, we use AES-GCM (Advanced Encryption Stan-
dard in Galois/Counter Mode) [13] with a 256-bit key (which
is the highest key length supported by AES) for the cryp-
tographic algorithm. The choice is based on the fact that
AES_256_GCM_SHA384 is one of the default cipher suites
in the TLS protocol [14]. Hence, for a fair comparison
with the TLS-based MQTT communication, we use the
AES_256_GCM_SHA384 cipher suite. AES significantly en-
hances encryption and decryption performances due to its wide
support across modern processor architectures that provide
hardware-accelerated AES instructions. On x86 processors,
AES-NI (Advanced Encryption Standard New Instructions)
[15] provides hardware-accelerated encryption and decryption
through instructions. Similarly, ARM processors integrate AES
support via the ARMv8 Cryptography Extensions [16]. These
hardware-based optimizations enable faster and more efficient
AES encryption/decryption operations.

AES is a symmetric key encryption algorithm, and hence
the same key is used for both encryption and decryption. In
WHISPERMQTT protocol, the broker generates a new key
for each topic when a new topic is published. The GCM
generates an authentication tag (or MAC) during encryption,
which is appended to the encrypted payload to ensure both
data integrity and authentication, as shown in Fig. 5. This tag
ensures that the cipher text has not been tampered with. As a
result, an attacker cannot alter data transmitted by the broker
over a non-TLS channel, as they cannot generate the correct
tag without the key. If the attacker attempts to modify the
encrypted payload, the subscriber will detect this manipulation
during decryption.

Also included is a unique nonce (called an Initialization
Vector, IV) that is required for each encryption operation to
ensure security. The nonce is generated for each new message

Algorithm 2 FindKey (topic)

1: Input: Topic name
Output: Encryption/Decryption key for the topic

»

3: index <+ hash(topic)

4: current < hahstable[index]

5: while current! = NULL do

6: {Iterate through chain of topic-to-key map}
7

8

9

if current.topic == topic then
return current.key
else
10: current < current.next
11: end if

12: end while

13: {Key does not exist if reaching here}
14: return NULL

randomly by the broker and is sent along with the encrypted
payload and the tag to the subscribers. The nonce is used to
ensure that the same plain text data encrypted with the same
key does not produce the same cipher text. This is important
for security as it prevents attackers from deducing the key by
observing the cipher texts. In our implementation, the nonce
size is 96 bits, and the tag size is 128 bits.

Topic to Key Mapping. As explained in the previous section,
the broker needs to store the encryption/decryption key (i.e.,
256-bit AES key) for each topic. To achieve this, we use a hash
map data structure to map topics to their corresponding keys.
Specifically, given a new PUBLISH packet from the publisher,
the broker first extracts the topic name from its variable header.
Then, it applies a simple hash algorithm to compute the hash
value of the topic name, which is then used as the index in
the hash map. Because multiple topic names can have the
same hash value, our implementation resolves conflicts using
separate chaining for the values (i.e., the keys). Algorithm 2
summarizes the key lookup operation.

Memory Optimization. The payload encryption process
shown in Fig. 5 involves allocating memory for the cipher text
and copying it to a new payload buffer. In our implementation,
we avoid allocating a new memory buffer for the cipher text.
Instead, we try to encrypt the payload in-place by using
realloc in the C stdlib library; this function tries to resize
the memory block pointed to by the original payload buffer.
If the buffer is large enough to accommodate the additional
fields, i.e., nonce and tag, the encryption is performed in-
place. Otherwise, a new buffer is allocated. This optimization
reduces the overhead associated with new memory allocation,
copying, and deallocation and improves the overall latency of
the broker.

D. Security Analysis

As explained above, in the WHISPERMQTT proto-
col, the encryption/decryption key for a topic, such as

"topicX’, is published to a corresponding key topic, e.g.,
"topicX/key’. The security of the key is ensured by the
TLS layer, which provides end-to-end encryption between the
broker and each of the subscribers. During the TLS handshake,
the broker authenticates the subscribers before establishing the
session for the key topic. If a subscriber fails authentication,
the key topic is not published to it. Without the key, the
encrypted payload of the data topic is meaningless to the
subscriber. Hence, WHISPERMQTT offers the same level of
security as standard TLS-based MQTT communication.

A concern may arise from the fact that any client node
could subscribe to the key topic. Suppose an illegitimate node
subscribes to the key topic ’topicX/key’. The node’s
subscription to the key topic is not a security concern, because
the node would need to have a legitimate subscription to the
(encrypted) data topic ’ topicX’. That is, if the node was
a legitimate subscriber, it already has access to the key topic.
If the node was not a legitimate subscriber, it would not have
access to the encrypted data topic, and hence the key would be
useless. Therefore, the security of the key is not compromised
by the public nature of the key topic.

Then, what if a legitimate subscriber leaks the key
"topicX/key’ to an unauthorized client? This concern
is not specific to WHISPERMQTT. A legitimate subscriber
already has access to plain text data, which is decrypted from
the cipher text ’topicX’ using the key provided by the
broker. As a result, even in standard TLS-based MQTT com-
munication, they could potentially leak the decrypted data to
an unauthorized client. Therefore, such malicious behavior is
not directly tied to the security of the key itself. Nevertheless,
one could revoke and regenerate the key at random intervals
to further enhance security.

IV. EVALUATION
A. Setup

We implemented WHISPERMQTT in the Eclipse Mosquitto
broker (version 2.0.18) [3] and the Eclipse Paho MQTT
Python Client (version 2.1.0) [11]. For the TLS and AES-
GCM encryption/decryption, we used OpenSSL version 3.0.13
[14]. Our experiments were conducted on the Google Cloud
Platform [9]. We used several e2-standard-16 virtual
machines (VMs), which are based on the x86/64 architecture
and run Debian GNU/Linux 12. Each VM is equipped with 16
virtual CPUs and 64 GB of memory. This setup was selected to
ensure that the VMs have adequate computational resources to
meet the demands of both the broker and the clients. We varied
the number of subscribers — 1, 3, 5, 7, and 10 — distributing
them evenly across up to four VMs (e.g., 3, 3, 2, and 2 for
the case of 10 subscribers).

B. Results

In what follows, we evaluate both the performance benefits
and overhead of WHISPERMQTT compared to unencrypted
and standard TLS-based MQTT communication approaches.
We focus on the following metrics: latency, protocol overhead,
and operational costs.

Receive
from Pub

Send to Network

Sub1 | Transmission
Send to Network
Sub 2 Transmission

Time

Non-TLS Latency

Receive
from Pub

Network
Transmission

Sendto Sub 1

Network
Transmission

Send to Sub 2

Sendto SubN

» Time
TLS Latency

Receive
from Pub

Encryption

Send to Network
Sub1 |Transmission

TS Network
Sub 2 Transmission

Send o Network
SubN | Transmission

Time

WhisperMQTT Latency

Fig. 7: Timeline of the broker’s publication to subscribers
when using non-TLS (top), TLS (middle), and WHISPER-
MQTT (bottom). The latency is measured from the moment
the broker receives a publication from the publisher until it
is sent out to all subscribers. The latencies do not include
network transmission times.

1) Broker latency: We first evaluate the latency in the
broker when publishing to multiple subscribers. We measure
the latency from the moment an MQTT packet is identified
as a PUBLISH packet until it is sent out to all subscribers
of the topic. Fig. 7 illustrates the timeline of the publication
from the broker to the subscribers when using non-TLS (top),
TLS (middle), and WHISPERMQTT (bottom). Note that the
time taken for the messages to travel from the broker to
the subscribers, i.e., transmission time, is not included in the
latency measurement.

Fig. 8 shows the average latency for different payload
sizes (10 KB, 100 KB, 1 MB, and 3 MB) and numbers
of subscribers (1, 3, 5, 7, and 10). The x-axis represents
the number of subscribers, while the y-axis represents the
average latency in milliseconds that are based on 500 samples.
Note the difference in the y-axis scales across the plots.
The results highlight the following: (i) when the data size
remains constant, the average latency increases as the number
of subscribers grows no matter the communication method; (ii)
the non-TLS case shows the lowest latency and the moderate
growth rate, which is expected as it does not involve encryp-
tion; (iii) the TLS-based publication shows the highest latency
and the steepest growth; (iv) WHISPERMQTT demonstrates
latency growth comparable to non-TLS communication, while
still supporting encrypted data transmission, as TLS does.

With a payload size of 1 MB being published to 10 sub-
scribers, the latency increase for WHISPERMQTT compared
to non-TLS is about 28.74%, while TLS shows an increase

Payload Size: 10 KB Payload Size: 100 KB

Payload Size: 1 MB Payload Size: 3 MB

o

-F- TLS
—3— WhisperMQTT
-f-+ Non-TLS L

- TS
—— WhisperMQTT .7
-J-- Non-TLS -

°
=

o
©

)
©

o
9

Broker's Latency (ms)

o
Broker's Latency (ms)

°
w

Broker's Latency (ms)

-F- TS
—3 WhisperMQTT .
-+ NonTLS .

-F- TS
—3— WhisperMQTT e
o] -F- NonTLs -

Broker's Latency (ms)

o
°

3 5 3 5
Number of Subscribers Number of Subscribers

3 5 3 5
Number of Subscribers Number of Subscribers

Fig. 8: Broker’s latency to publish different payload sizes to multiple subscribers.

TABLE I: Average latency (ms) and percentage increase due to
TLS and WHISPERMQTT compared to non-TLS for different
payload sizes when publishing to 10 subscribers.

Payload Size | 10 KB 100 KB 1 MB 3 MB
(A) Non-TLS Latency 0.30 0.63 421 12.87
(B) TLS Latency 0.38 1.31 10.70 33.29
(C) WHISPER Latency 0.33 0.78 542 16.30
((B-A)/A) TLS Overhead 26.67% 107.94% 154.16% 158.67%
((C-A)/A) WHISPER Overhead | 10.00% 23.81% 28.74% 26.66%
((B-C)/B) Latency Reduction ‘ 13.16% 40.46% 49.35% 51.04%

of approximately 154.16% relative to non-TLS, as shown
in Table I. This trend is also observed with other payload
sizes; the percentage increase for WHISPERMQTT compared
to non-TLS are approximately 10.00% for 10 KB, 23.81%
for 100 KB, and 26.66% for 3 MB, respectively. In contrast,
TLS shows percentage growth of about 26.67% for 10 KB,
107.94% for 100 KB, and 158.67% for 3 MB. As can be
seen, the overhead of TLS increases rapidly with the payload
size and the number of subscribers. The last row in Table I
further indicates that WHISPERMQTT reduces the broker’s
latency by over 50% compared to TLS for payloads of 3 MB.

To demonstrate that WHISPERMQTT operates indepen-
dently of specific processor architectures and is compatible

Payload Size: 3 MB (w/ Broker running on ARM processor)

30

-F- TLS 2

25 —4— WhisperMQTT /z’

i -§++ Non-TLS ,,’

£ -

=20 : g

z | ¥

c ,’

[} | -

© 15 et

- i

» i

2]

[0} ’ | £
10 -

$é 7 /

)

5 10
Number of Subscribers

Fig. 9: ARM processor-based broker’s latency to publish a 3
MB payload.

with various environments, we conducted an additional ex-
periment. For this purpose, we configured a virtual machine
for the broker on an ARM processor-based instance (Ampere
Altra processor [17], t2a-standard-16), maintaining the
same conditions as in the previous experiments. Fig. 9 show
similar trends to those observed in the previous experiments;
WHISPERMQTT aligns with the growth rate of the non-
TLS-based publication shown in Fig. 8. This result shows
WHISPERMQTT’s ability to maintain consistent performance
across diverse processor architectures and environments.

The results above highlight that WHISPERMQTT effec-
tively reduces latency overhead while ensuring secure com-
munication comparable to the TLS-based publication.

2) Protocol overhead: Encryption introduces additional
metadata, which leads to overhead in data transmission. There-
fore, we evaluate the overhead of WHISPERMQTT by com-
paring the message size with the TLS-based communication.
Note that MQTT packets and TLS records (which will be
discussed later) are encapsulated in TCP packets. Hence, we
focus on the payloads transmitted by TCP packets, excluding
the TCP and IP headers.

An MQTT packet consists of a fixed header, a variable
header, and a payload [12] as shown in Fig. 5. The fixed header
contains the control field (1 byte) and the remaining length
field, which is 2—4 bytes long, depending on the payload size.
The variable header includes the topic name length (2 bytes)
and the topic name itself (4 bytes). Hence, as shown in the
row labeled (A) in Table II, the MQTT header size ranges
between 9 and 11 bytes. For a payload of 10,000 bytes, the
total MQTT packet size is 10,009 bytes, and for a payload of
3,000,000 bytes, it is 3,000,011 bytes, as shown in Row (B).!
These are the sizes of the messages that the broker sends to
each subscriber over a non-TLS connection. Note, however,
that we do not consider the MQTT packet header as overhead,
since it remains constant across all communication methods.
Instead, we treat it as part of the payload that the underlying
layer must transmit.

When using TLS, the data is encapsulated in TLS records [2]
as shown in Fig. 10. A TLS record is the basic unit of the

Note that we use the message sizes that are multiples of 1,000 bytes, not
1,024 bytes, for this experiment for simplicity in the overhead analysis.

WhiSper | | Encrypted MQTT Payload Nonce | MAC |
' 1 12bytes 16 bytes
I Whisper Overhead
T T T T
| ! ! MQTT Packet ! !
16KB % 16KB 16KB
TLS TLS TLS TLS
Record Record Record Record
TLS ; TLS Record .
115 | Encrypted | Jmer | AUhent] TLS overhead =
Header [Payload Type D # records x 22
5 bytes 1 bytes 16 byte
... g g
- TLS Overhead

Fig. 10: Protocol overhead of WHISPERMQTT (top) and
TLS (bottom). WHISPERMQTT adds a single pair of nonce
and MAC to the payload, regardless of its size, while TLS
introduces overhead that increases with the payload size.

TABLE II: Protocol overhead comparison between TLS and
WHISPERMQTT for different MQTT payload sizes.

Payload Size (bytes) | 10,000 100,000 1,000,000 3,000,000

(A) MQTT header size 9 10 10 11

(B) MQTT packet size 10,009 100,010 1,000,010 3,000,011
(C) # TLS records 1 7 62 184
(D=Cx?22) TLS overhead 22 154 1,364 4,048
(E) WHISPER overhead 28 28 28 28
(D/E) TLS / WHISPER % \ 79% 550% 4,871% 14,457%

communication in the TLS protocol. A TLS record consists
of a header and a payload. The TLS header is a fixed-
length structure composed of content type (1 byte), version
(2 bytes), and the length of the encrypted payload (2 bytes).
When sending data over TLS, we need to account for the
overhead introduced by the TLS record structure, including
the header and the authentication tag (which is generated by
an Authenticated Encryption with Associated Data (AEAD)
cipher, like AES-GCM). Note that there is no padding because
AES-GCM is a block cipher mode that does not require
padding.

The maximum size of the encrypted payload (application
data) in a single TLS record is typically 16 KB (16,384 bytes).
A data size of 10,000 bytes (plus the MQTT header, which
is 9 bytes) can be sent in a single TLS record. Hence, the
additional overhead is (see Fig. 10):

o 5 bytes for the (single) TLS record header,

« | byte for the inner content type [2], and

e 16 bytes (=128 bits) for the authentication tag.
Therefore, the total overhead per record is 22 bytes.

For large data sizes, the data is divided into multiple TLS

records, each of which is encrypted individually. Assuming
each TLS record is filled to its maximum capacity (thus
minimizing TLS overhead), an MQTT payload of 100,000
bytes (plus the 10-byte MQTT header) is divided into 7 TLS
records because [100,010/16,384] = 7. In our experiments,
we captured 100,164 bytes of TCP payload: six full TLS
records, each consuming 16,384 + 22 bytes, and a partial
record consuming 1,706 + 22 bytes. Hence, the total TLS
overhead for sending 100,010 bytes of an MQTT packet is
154 bytes. Similarly, an MQTT packet of 3,000,011 bytes was
divided into 184 TLS records, as [3,000,011/16,384] = 184,
resulting in a total overhead of 4,048 bytes. Generalizing this,
the overhead introduced by TLS for a given MQTT packet
size m can be calculated by [m/R]| x (17 + 5), where R is
the maximum record size (e.g., 16 KB). The row labeled (D)
in Table II shows the overhead introduced by TLS for different
MQTT payload sizes.

While the protocol overhead of TLS increases with data size
as analyzed above, the overhead of WHISPERMQTT remains
constant. This is because its per-topic-based encryption adds
only a single pair of metadata, nonce and MAC, to the MQTT
packet as part of the payload, regardless of the data size, as
depicted in Fig. 10. In contrast, TLS’s record-based encryption
divides the data into multiple records and adds metadata to
each one. As can be seen from the row labeled (E) in Table II,
the protocol overhead of WHISPERMQTT is 28 bytes for all
data sizes: 96 bits (12 bytes) for the nonce and 128 bits (16
bytes) for the MAC.

WHISPERMQTT also incurs a negligibly small overhead
due to key distribution. We use a 256-bit (32-byte) key for
AES-GCM encryption, which is distributed to subscribers by
the broker whenever a key is generated or updated. A single
key update through the TLS channel requires a single TLS
record, which incurs an overhead of 54 bytes: 32 bytes for the
key itself and 22 bytes for TLS overhead. Assuming the key
is updated on average every p publications, the overhead due
to the key update is 54/(p x s), where s is the unencrypted
payload size. For example, if the key is updated every 100
publications, the overhead is 54/(100 x 10,000) = 0.0054%
for a 10,000-byte message. This overhead is effectively amor-
tized over larger messages and/or less frequent key updates.
For instance, when sending a 3,000,000-byte message and
updating the key every 1,000 publications, the overhead due
to the key distribution becomes 0.0000018%.

The last row in Table II shows the percentage increase in
the number of bytes for protocol overhead when using TLS
compared to WHISPERMQTT (ignoring the overhead due to
key distribution, which is negligible). Only when the MQTT
payload is small enough to fit into a single TLS record,
the overhead of TLS is less than that of WHISPERMQTT.
However, as the payload size increases, the overhead of TLS
increases significantly compared to WHISPERMQTT. For ex-
ample, when sending a 3,000,000-byte message, the overhead
increases by 14,457% when using TLS compared to WHIS-
PERMQTT. This highlights the efficiency of WHISPERMQTT

in reducing the protocol overhead compared to TLS-based
publication. Note that the benefits of using WHISPERMQTT
are more pronounced in a subscription-heavy MQTT network,
where the broker needs to send the same data to multiple
subscribers.

3) Operational costs: We also assess the WHISPERMQTT-
specific operational costs, which include (a) the time taken to
encrypt a payload using AES-GCM and (b) the time needed
to look up the encryption/decryption key given the topic.

AES-GCM encryption time: We measured the average time
taken to encrypt a payload using AES-GCM (with a 256-bit
key). For this, we randomly generated 10,000 payloads of sizes
10 KB, 100 KB, 1 MB, and 3 MB.

TABLE III: Average AES-GCM encryption time.

Data Size 10 KB 100 KB 1 MB 3 MB
Average 298 us 26.06us 26574 us 803.63 us
Std. Deviation 0.45 us 1.48 us 7.78 us 23.11 us

Table III shows the average encryption time for different
data sizes. The average encryption time increases linearly with
the data size, as expected. Although the encryption time is
relatively small, it is important to consider the overhead when
encrypting each payload for a large number of subscribers in
the standard TLS-based communication. On the other hand, in
WHISPERMQTT, the encryption is done only once for each
publication, which reduces the burden on the broker signifi-
cantly; e.g., approximately 0.8 milliseconds for encrypting a
3 MB payload no matter how many subscribers are there.

Key lookup time: As explained in Section III-C, the broker
maintains a hash table to map topics to encryption/decryption
keys. A poor design and implementation of this hash table
could lead to a performance overhead as the lookup operation
is performed for each publication. Hence, we measured the
average time taken by the broker to look up a key in this
hash table (i.e., Algorithm 2). In this experiment, we gradually
generated random topic-to-key mappings, starting from an
empty table and increasing to 10,000 topics (with lengths
randomly chosen between 10 and 20 characters), measured
the lookup time for each, and then calculated the average.
This process was repeated 100 times for each data point.
Fig. 11 shows the average lookup times for two different
hash table sizes (i.e., the number of slots). For the hash table
with 100 slots, the lookup time increases gradually as the
number of mappings reaches 1,000. Beyond this point, the
lookup time rises more rapidly due to the increased number
of collisions (i.e., multiple topic-to-key mappings being hashed
to the same slot). For example, when the number of mappings
reaches 5,000, each slot would contain, on average, 50 map-
pings (i.e., a linked list of 50 mappings), assuming the outputs
of the hash function are uniformly distributed. Therefore, on
average, 25 comparisons (each involving multiple memory
reads) would be needed to complete a single query. In contrast,
the hash table with 1,000 slots shows a more stable lookup

1000

—e— Hash Table Size = 100

Hash Table Size = 1000
800 4 r

600 1

4001 !

200 A

Average Key Lookup Time (ns)

=y ==

5 e T
Number of Key Topics

Fig. 11: Average time to look up a key in the topic-to-key

hash table. The x-axis represents the number of topic-to-key

mappings that the broker maintains. Notice that the x-axis is

in logarithmic scale and the y-axis is in nanoseconds.

time, even with 10,000 mappings. This is due to the signifi-
cantly lower probability of collisions, which results in shorter
chains of mappings within each slot. Overall, the lookup time
remains very small (tens or hundreds of nanoseconds), even
with a small hash table size, which indicates that the overhead
of key lookup is negligible in WHISPERMQTT.

V. RELATED WORK

Recent research in MQTT for IoT emphasizes optimizing
protocol performance under resource constraints and explor-
ing lightweight encryption methods [18]. Yassein et al. [19]
provide an overview of MQTT and its architecture, message
format, scope, and Quality of Service (QoS) levels, while
emphasizing its efficiency in low-bandwidth, publish-subscribe
communication. In addition to offering a taxonomy of MQTT
implementations, Jutadhamakorn et al. [20] and Mishra and
Kertesz [21] describe the development of a low-cost, scalable
MQTT broker utilizing open-source software and M2M proto-
cols, with a focus on clustering for effective message exchange
in IoT networks.

In the realm of MQTT with TLS, trends include enhancing
TLS efficiency and developing configurations that balance
robust security with minimal latency. In [22], Prantl et al. pro-
vide a comprehensive analysis of the performance degradation
associated with the use of MQTT over TLS. The study quan-
tifies the trade-offs inherent in employing TLS with MQTT,
highlighting the notable drawbacks in terms of performance.
Specifically, the work delves into a detailed examination of the
broker connection times and energy efficiency under different
conditions, comparing scenarios where TLS is implemented
versus those where it is not. This analysis provides valuable
insights into the practical implications of integrating TLS into
MQTT systems, especially in contexts where performance
optimization is critical.

In addition to TLS, various encryption methods can enhance
the security of MQTT communications in resource-constrained

IoT environments. Attribute-Based Encryption (ABE) per-
forms particularly efficiently for communication protocols that
require fine-grained access control [23]. Liao et al. [24] also
propose a new approach that combines chaos synchronization
with Pairing-Free Cipher text-Policy-ABE (PF-CP-ABE) to
improve MQTT security for devices with limited resources.
This allows for effective encryption with less computational
load. Furthermore, they show using Advanced Encryption
Standard (AES) and hybrid encryption approaches can pro-
vide strong security while ensuring efficient performance in
resource-constrained environments.

Application-level encryption (ALE), also known as at-rest
encryption, secures data at the application layer prior to
transmission or storage, as WHISPERMQTT does, to protect
sensitive data from physical threats [25]. Orobosade et al. [26]
address security issues in cloud computing caused by a rise
of confidential data and malicious behavior. They emphasize
the importance of various encryption techniques in cloud
security by comparing Elliptic Curve Cryptography (ECC) and
Advanced Encryption Standard. The study evaluates encryp-
tion/decryption times, throughput, and cipher-text to plain-
text ratios while proposing a hybrid model that combines
symmetric and asymmetric keys to enhance data secrecy. They
showed that ECC improves key management efficiency, AES
offers quick and reliable encryption, and the hybrid approach
successfully balances speed and security.

Melvin et al. [27] explore various MQTT broker protocols,
comparing Mosquitto [3], VerneMQ [4], EMQX [6], and
HiveMQ [5] to determine the most efficient protocol. They
find that Mosquitto stands out due to its low CPU and mem-
ory usage, making it highly efficient. However, Mosquitto’s
performance significantly suffers in environments with packet
loss and high client volumes.

VI. CONCLUSION

In this paper, we presented a novel approach to securing
MQTT networking in a lightweight manner without modifying
the MQTT protocol. The proposed scheme, WHISPERMQTT,
reduces the computational overhead on the broker when
publishing messages to a group of subscribers by shifting
encryption operations to the broker layer. By utilizing both
TLS and non-TLS connections, it is able to reduce the number
of encryption operations performed by the broker, leading to
decreased latency and increased throughput. Our evaluation
results show that WHISPERMQTT can reduce the latency
overhead of the broker’s publication process by 10% to 50%
compared to standard TLS-based MQTT communication.

ACKNOWLEDGMENT

This work is supported in part by NCSU Faculty Research
and Professional Development fund and the Google Cloud
Research Credits program with the award GCP19980904.
Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily
reflect the views of sponsors.

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
(10]
(11]
[12]
[13]

[14]
[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES
Mqtt: The standard for iot messaging. https://mqtt.org/.
Internet Engineering Task Force (IETF). Rfc8446:
The transport layer security (tls) protocol version 1.3.

https://datatracker.ietf.org/doc/html/rfc8446.
Eclipse mosquitto, an open source mqtt broker. https://mosquitto.org/.
Vernemq mgqtt broker. https://vernemq.com/intro/mqtt-primer/.

Hivemq mqtt broker. https://www.hivemq.com/products/mqtt-broker/.
Emgx mgqtt broker. https://www.emqgx.com/en/blog/the-ultimate-guide-
to-mgqtt-broker-comparison.

Google. Https encryption on the
https://transparencyreport.google.com/https/overview ?hl=en.
Mqtt streaming. https://doc.akka.io/docs/alpakka/current/mqtt-
streaming.html.

Google cloud platform overview. https://cloud.google.com/docs/overview.
D. Dinculeand and X. Cheng, “Vulnerabilities and limitations of mqtt
protocol used between iot devices,” Applied Sciences, vol. 9, no. 5, p.
848, 2019.

Eclipse paho client python. https://projects.eclipse.org/projects/iot.paho.
Mqtt version 3.1.1 - oasis standard. https://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/0s/mqtt-v3.1.1-0s.html.

M. Dworkin, “Recommendation for block cipher modes of operation:
Galois/counter mode (gcm) and gmac,” National Institute of Standards
and Technology, 2007.

OpenSSL. Tls1.3. https://wiki.openssl.org/index.php/TLS1.3.
Intel advanced encryption standard instructions

web.

(aes-ni).

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-

encryption-standard-instructions-aes-ni.html.

Arm v8-a cryptographic extension.
https://developer.arm.com/documentation/101432/r1p2/Functional-
description/About-the-Cryptographic-Extension.

Ampere altra family product brief.
https://amperecomputing.com/briefs/ampere-altra-family-product-brief.
G. C. Hillar, MQTT Essentials-A lightweight IoT protocol. — Packt
Publishing Ltd, 2017.

M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi, “Inter-
net of things: Survey and open issues of mqtt protocol,” in Proceedings
of the international conference on engineering & MIS (ICEMIS), 2017,
pp. 1-6.

P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga, and
D. Kobayashi, “A scalable and low-cost mqtt broker clustering system,”
in Proceedings of the 2nd International Conference on Information
Technology (INCIT), 2017, pp. 1-5.

B. Mishra and A. Kertesz, “The use of mqtt in m2m and iot systems:
A survey,” leee Access, vol. 8, pp. 201 071-201 086, 2020.

T. Prantl, L. Ifflinder, S. Herrnleben, S. Engel, S. Kounev, and
C. Krupitzer, “Performance impact analysis of securing mgqtt using
tls,” in Proceedings of the ACM/SPEC international conference on
performance engineering, 2021, pp. 241-248.

V. Gupta, S. Khera, and N. Turk, “Mqtt protocol employing iot based
home safety system with abe encryption,” Multimedia Tools and Appli-
cations, vol. 80, no. 2, pp. 2931-2949, 2021.

T.-L. Liao, H.-R. Lin, P-Y. Wan, and J.-J. Yan, “Improved attribute-
based encryption using chaos synchronization and its application to mqtt
security,” Applied Sciences, vol. 9, no. 20, p. 4454, 2019.

Y. Ding and K. Klein, “Model-driven application-level encryption for the
privacy of e-health data,” in Proceedings of the International Conference
on Availability, Reliability and Security, 2010, pp. 341-346.

A. Orobosade, T. A. Favour-Bethy, A. B. Kayode, and A. J. Gabriel,
“Cloud application security using hybrid encryption,” Communications
on Applied Electronics, vol. 7, no. 33, pp. 25-31, 2020.

M. Bender, E. Kirdan, M.-O. Pahl, and G. Carle, “Open-source mgqtt
evaluation,” in Proceedings of the 18th IEEE Annual Consumer Com-
munications & Networking Conference (CCNC), 2021, pp. 1-4.

