
AdaptAV: Continuous Adaption of Vision Models for
Autonomous Vehicles Using Cloud-based Oracle

Yuheng Zhu, Dhruva Ungrupulithaya, Boluo Ge, Man-Ki Yoon
Department of Computer Science
North Carolina State University

Abstract—Deploying vision perception models in autonomous
vehicles requires that we prioritize inference speeds, resulting in a
model with shallower architectures and lesser model parameters
(i.e., more pruned). Such small models do not generalize well,
which could result in poor performance when encountered with
novel scenarios. We propose a system that overcomes this by
continuously retraining the vision models on the cloud with
data uploaded by vehicles. We leverage the abundant compute
resources, including machine learning accelerators, of the cloud to
run a highly-accurate oracle model that will guide the retraining
process of the on-vehicle model. This newly trained model is
transmitted to the vehicle over the network and is utilized by the
vehicle for perceptions, leading to improved inference accuracy
over time.

I. INTRODUCTION

The proliferation of autonomous vehicles (AVs) has been
one of the most significant trends in vehicular technology with
automakers investing heavily [1]. Perception models are key
to AVs’ success and work by taking inputs from an array of
sensors like cameras and LiDARs to assess the surrounding
environment and make relevant decisions. The development of
these intelligent algorithms is highly data-driven and is a result
of the collection of millions of hours of driving data in a variety
of unique environmental conditions and driving scenarios and
training the models on these extensive datasets.

Although the models are tested vigorously to ensure that they
perform well in a variety of challenging conditions, optimal
performance is not always guaranteed. Poor performance can be
attributed to two primary reasons: a suboptimal model and/or
inadequate comprehensive training. Due to the constrained
computational and memory resources available in vehicles,
the perception models running in these systems may not be
as precise as the most advanced models currently accessible.
These models are instead optimized for resource efficiency,
resulting in the model performing inference quickly to meet
the real-time requirements of an autonomous vehicle. Thus, the
perception model performs poorly when it encounters novel
and challenging scenarios not included in the training dataset,
leading to inferior decisions. For instance, Fig. 1 shows the
detection of a larger model (Faster R-CNN [2]) and that of
a smaller model (SSD-MobileNet [3] [4]) that would run on
the vehicle, both of which are trained on the Waymo Open
Dataset [5]. There is a significant difference in the inference
outputs of the two models, with the smaller MobileNet model
missing some key objects such as the pedestrian crossing the
road. This poor perception performance, if not addressed, may
lead to catastrophic consequences [6] [7].

Detected by the Oracle model
Detected by the on-vehicle model

Fig. 1. A scenario where the vision model deployed in the vehicle fails to
detect multiple important objects. The purple bounding boxes correspond to the
detection of the larger Faster R-CNN model, and the yellow bounding boxes
correspond to the smaller SSD-MobileNet model.

The conventional approach would be to deploy test vehicles
to collect more data and use it to train and develop a better
perception model. This improved model would then be updated
when the vehicle comes to the service center as a software
update, or if supported, through an over-the-air (OTA) update.
However, the process of data collection and development of
the updated model would take significant amounts of time and
resources and still may not address all the shortcomings of the
previous model [8].

Drawing from the above insights, we propose AdaptAV, a
closed-loop software architecture that continuously improves
and updates the model running in the vehicle. We achieve this
by leveraging the power of computing on the cloud, which
enables us to apply a complex, powerful perception model to
flag erroneous or poor decisions of the on-vehicle model. These
oracle models are developed to prioritize inference accuracy
rather than speed, which allows us to use them to steer the
(re)training of the small model that runs on the vehicle. The
vehicle continuously logs the vision data and pushes it to the
cloud in a bandwidth-efficient manner by using popular video
compression techniques, allowing us to deploy this system even
with limited network connectivity.

In this paper, we make the following contributions:
• We present AdaptAV, a closed-loop software framework

that continuously updates the vision model running in the
vehicle using the cloud-side oracle model and the most
recently captured image stream;

• We propose frame sampling techniques that can reduce
overfitting of the vision model;

• We analyze the AdaptAV design parameters and their
impacts on ML inference quality; and

Video
Encoder

Retrain Device Model

Network

On-Vehicle
Model

Oracle Model

Ground Truth Generation

Camera Input

Video Frame Labels

𝑥 𝑦

Cloud Compute Instance with GPU

Over-the-Air Update

UploadVideo Packets

Decoding and
Frame Sampling

§ Periodic sampling or
§ Selective sampling

using Oracle’s output

GPU

Fig. 2. AdaptAV continuously updates the vision model running on the vehicle. The image stream used by the vision model is compressed and uploaded to the
cloud. A cloud instance with powerful compute with machine learning accelerators uses the data to retrain the model. The retrained model is then deployed back
to the vehicle, closing the loop.

• We show the practicality of AdaptAV by applying it to a
prototype vehicle integrated with a public cloud.

II. RELATED WORK

For visual object detection, existing methods can be divided
into one-stage approach, represented by YOLO [9] [10] [11],
SSD [4], and two-stage approaches represented by R-CNN and
its various variants [12] [2] [13]. One-stage approaches can
generate object location and confidence in only a single stage,
which ensures the inference speed and thus is more suitable to
be deployed on vehicles. Two-stage models need to generate
region proposals first and then generate final detection based
on the region proposals. It offers better accuracy than one-stage
models but with higher latency.

One common approach to using cloud computing resources
to alleviate computational power constraints of device is to
apply an early exit strategy on the device model, which re-
duces the device-side inference latency by implementing some
scheduling procedures to split some layers of the inference
model to the cloud or edge computing platform [14] [15]. For
example, Edge AI [16] implements a DNN-based collaborative
inference framework for edge computing, which uses early exit
to distribute computing loads across devices and edge servers,
but such approaches rely on consistent model architectures,
making the framework overly coupled with the inference model
architecture.

The other approach is that the device model completely
undertakes all visual inference tasks for the vehicle and uses
the cloud model as a teacher to transfer its generalization capa-
bility to the device model. This kind of knowledge distillation
approach ensures the decoupling of the model architectures
between the device and the cloud. However, it requires the
visual data collected on the vehicles to be sent to the cloud
for inference, which leads to higher demand on network band-
width. Edge Compression [17] proposes the use of compressive
imaging (CI) cameras in addition to specialized energy-efficient
deep neural networks in the cloud and edge servers. However,
this approach would require the use of less prevalent and more

expensive CI cameras, as well as a complete redesign of the
other vision-based software modules in the vehicle.

Ekya [18] is a similar framework for continuous retraining
of a vision model. But, it uses edge servers instead of the
cloud because the bandwidth required to upload raw camera
data is too high. More importantly, their edge servers also
perform vision inference, unlike our approach, which performs
inference locally on AV devices. Khani et al. [19] propose an
on-the-device frame sampling technique to reduce the network
bandwidth requirements. For the sampling, it utilizes the device
model’s results, which can be problematic since these results
may not be accurate enough to help determine the samples
relevant for the retraining process. Our framework is novel in
that it leverages an oracle model running on a cloud platform
to continuously improve vision models.

III. ADAPTAV: CONTINUOUS ADAPTION USING
CLOUD-BASED ORACLE MODEL

A. High-level Idea of AdaptAV

Due to limited computing power, vehicles cannot deploy
extremely large models with complex architectures. Although
using these models for real-time inference in the vehicle is
impractical, their high accuracy makes them suitable as oracle.
The oracle model, trained on an extensive dataset, generalizes
better than the smaller, shallower models running on the ve-
hicles. Consequently, an oracle model performs significantly
better when encountering new scenes not seen during training.
As shown in Table I, the Faster-RCNN model (the oracle model)
achieves a significantly higher mean average precision (mAP)1

of 52% compared to the smaller SSD-Mobilenet model that
runs in the vehicle (mAP of 23%). Both models were trained
on 35,712 images from the Waymo Open Dataset [5] and tested
on a separate subset of 3,968 images.

1It is an evaluation metric for object detection models that summarizes
the precision-recall curve as the area under the curve across all confidence
thresholds. The precision of a model is calculated as TP/(TP + FP) where TP
is the number of true positives, and FP is the number of false positives. The
recall of a model is calculated as TP/(FP + FN) where FN is the number of
false negatives. A higher AP indicates a higher accuracy and vice versa.

2

TABLE I
MEAN AVERAGE PRECISION FOR ORACLE MODEL AND DEVICE MODEL

Class Faster R-CNN SSD-Mobilenet

person 0.45 0.17
car 0.72 0.49

bicycle 0.41 0.18
sign 0.48 0.09

Average 0.52 0.23

Drawing from these results, we hypothesize that the pre-
dictions from the oracle model can be treated as the ground
truth for retraining the on-vehicle model. AdaptAV is a closed-
loop pipeline that streamlines this process as shown in Fig. 2.
Autonomous vehicles typically have limited computing and
memory resources dedicated to performing time and safety-
critical tasks essential to their functioning. Leveraging cloud
storage and computing provides us with near-infinite memory
and powerful computing capabilities to implement AdaptAV. It
continuously streams the camera images to the cloud, where the
cloud-side compute instance runs the oracle model to process
the images. The results of the oracle model, i.e., the ground
truth, are used to retrain the device model, which is then sent
back to the vehicle. AdaptAV hence continuously improves the
on-vehicle model, making it more robust to new scenarios.

B. Video Compression

As shown in Fig. 2, the raw image stream is fed periodically
to AdaptAV as it is captured by the camera. Although cloud
resources offer significant advantages, the network bandwidth
can easily become the bottleneck because transmitting the
raw image stream to the cloud may be prohibitively slow.
Camera sensors used in autonomous vehicles (such as MIPI
CSI cameras) generate high-resolution images at a high rate to
capture the finest details of the environment. Unlike webcams,
they do not have built-in codecs, so the raw frames generate
an enormous amount of data. Suppose the vehicle has a single
3-channel Full HD camera (1920 x 1080 x 3) recording at 30
Hz. Then, we would need a network capable of upload speeds
of approximately 1.4 Gbps.

AdaptAV tackles the challenges by compressing the raw
frames into a video stream, which consumes much less network
resources to transmit. Specifically, the raw frames are encoded
into a sequence of video packets, which are queued and
pushed to the cloud by a separate thread. For the compression,
we use FFmpeg [20] as a backend, which allows us to use a
variety of video codecs. In this paper, we utilize the ubiquitous
H.264 codec (libx264) for video compression, which is the
most common encoding format in various domains such as
online streaming and digital television. Its high compression
efficiency is demonstrated by the Waymo dataset in our eval-
uation. This dataset, consisting of 200 subsets and requiring
approximately 286 GB of storage, can be compressed into a
video of mere 4.2 GB, saving storage over 98%.

C. Frame Sampling

The compressed image stream transmitted to the cloud is
extensive. If the camera is emitting data at a rate of 30 frames

0 25 50 75 100 125 150 175 200
Training Epoch

0.12

0.14

0.16

0.18

0.20

m
AP mAP

Val Loss

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Va
l L

os
s

Fig. 3. A model is likely to overfit when using frames captured/sampled at a
high rate. Hence, a frame sampling is necessary.

per second, 108,000 images are generated in just 1 hour of
driving. Using all these images to retrain the device model
would take a large amount of computing resources. Moreover,
we risk overfitting the model by using all the images, i.e., the
model will memorize rather than generalize. Fig. 3 shows that
when using all of the BDD100K dataset [21] (which will be
introduced in the next section) for training, overfitting starts
to occur. To overcome the problem, we propose the following
frame sampling techniques.

a) Periodic sampling: This is the baseline approach in
which we periodically sample an image in a sampling period
across a chosen window of the recorded data. For instance,
we can choose the first image for every n images, effectively
reducing the training dataset to 1/n of its original size compared
to using all incoming images.

b) Density-based sampling: Another approach is to take
into account the oracle model’s prediction from each of the
images. As an example, particularly for object detection tasks,
we propose a method that selects the frame with the highest
number of objects in each sampling period (with ties broken by
randomly choosing one), as illustrated in Fig. 4. The number
of objects in each image is obtained from the prediction by
the oracle model. The idea behind this approach is that for
a sequence of images captured within a short period of time,
their objects and predictions should be similar. If we want to
downsample this set of images, the most rational way to do so
is by selecting the frame with the most information, which can
be implied by the number of objects present.

c) Event-based sampling: For event-based sampling, the
criterion for selecting a frame is the occurrence of an event,
which can be defined by changes in the types or behavior of de-
tected objects. For example, as shown in Fig. 5, the occurrence
of a new object not previously present or the disappearance
of an existing object is considered an event. Similar to the
density-based sampling, this approach also utilizes the oracle
model’s predictions, incorporating not only object detection
results but also tracking information. Frames are selected when
preset events are detected. The rationale behind the idea is that
when the same objects appear in a series of frames without any
significant change, they do not deliver much ‘new’ information.
This sampling approach is designed to ensure that only frames
with meaningful changes are selected, maintaining the relevance

3

2 3 4 5 7 8 9 10

Pick Frame 3

116

Sampling Period Sampling Period

1

Fr
am

e
O

ra
cl

e
G

T

Pick Frame 10

ob

js

2 3 4 1 2 2 3 2 1 4

Fig. 4. Density-based frame sampling. During each sampling period, the one that has the largest number of detected objects is selected.

2 43 5 8

Pick Frame 4

1161

Fr
am

e
O
ra
cl
e

1
2

3

G
T

Pick Frame 9

Ev
en

t

New object (3)
in

1
2

1
2

1
2

3
1

2

3
1

2

3
1

2

4

New object (4)
in

Pick Frame 7

3
1

2

4 3
1

4 3
1

4

Existing
object (2)

out

9 107

2

Fig. 5. Event-based frame sampling. An event is defined by the appearance of a new object or the disappearance of an existing object.

of the sampled frames. In our implementation, we use SORT
[22], a real-time tracking algorithm that tracks each unique
object in continuous frames and generates a unique identifier
for each of them. By using it to track the motion of objects in
frames, we detect when each object first enters and leaves the
frame and mark it as an event.

If available, one could instead detect events based on other
sensor inputs, such as vehicle turns, sharp braking, or the
presence of other objects at relatively high speeds. The pro-
posed sampling approaches are critically different from existing
techniques such as [19] in that we leverage the oracle model’s
results, not the device model. Using the device model’s infer-
ence outputs risks relevant objects going undetected or being
misclassified during the retraining process.

Note that filtering differs from sampling. For instance, Re-
ducto [23] is an image filtering mechanism running directly on
a camera system-on-chip that filters out irrelevant frames for the
perception models at the camera level. Mistakes made by the
filtering algorithm may drop camera frames for a long period
of time, which can be a critical hazard to safety-critical systems
like autonomous vehicles.

IV. EVALUATION

A. Setup

1) Platforms: Our implementation is based on an NVIDIA
AGX Orin Development Kit [24] that we run on a small-
footprint vehicle (approx. 3 ft x 6 ft) shown in Fig. 10. It
features a 12-core ARM Cortex-A78AE CPU, each core running
at 2.2 GHz, a 2048-core NVIDIA Ampere GPU, and 64 GB
of memory. The software system is configured with NVIDIA

JetPack SDK v5.1.2, which includes Linux for Tegra 35.4.1,
CUDA v11.4, cuDNN v8.6.0, and TensorRT v5.1.2. For the
prototype unmanned vehicle (detailed in Section IV-C), we uti-
lize Google Cloud [25] Storage Bucket where video packets are
uploaded to. We use a Google Cloud virtual machine instance
a2-highgpu-1g for running the Faster R-CNN oracle model
and retraining the on-device model. It has 12 virtual CPUs, 85
GB of memory, an NVIDIA A100 (40 GB) GPU, and operates
Debian 11.1 and CUDA v12.2.

2) Datasets:
• Waymo Open Dataset [5]: We choose the first 200 driving

video records out of the 2D object detection validation set
from Waymo Open Dataset v1.4.2. The subset consists of
39,681 frames with a resolution of 1920 x 1280 captured at
10 Hz. It is used only for the initial training of our object
detection models.

• BDD100K [21]: MOT-2020 Images set from BDD100K
serves as a simulation of actual video stream. The frames
are captured at 5 Hz with 1280 x 720 resolution. The
dataset comprises 200 driving video records (approx. 200
frames per record), amounting to a total of 39,973 frames.

3) Models:
• Faster R-CNN [2]: It is an object detection model that uses

a region proposal network to classify object proposals and
predict bounding boxes within a single pass through the
network. We utilize it as the oracle model for generating
the most accurate detection results possible. The model
contains 41,092,136 parameters, and the model file occu-
pies 161,916 KB of disk space.

4

0 50 100 150 200 250 300 350 400
Training Epoch

3.6

3.8

4.0

4.2

4.4
Va

l L
os

s

Fig. 6. The validation loss during the continuous retraining of the SSD-
Mobilenet model. There are a total of 4 retraining windows.

• SSD-MobileNet [3] [4]: It is a fast and efficient object de-
tection model that combines Single Shot Multibox Detector
with a MobileNet architecture, making it ideal for real-time
applications on resource-constrained devices. In our work,
it is deployed on the vehicle to perform real-time detection
on camera inputs as the device model as mentioned earlier.
The model contains 3,206,976 parameters, and the model
file size is 27,641 KB.

On the Orin device, while the SSD-MobileNet takes approx-
imately 5 ms to make a single inference, the Faster R-CNN
model takes 130 ms. This shows that the oracle model is too
large to be run on the on-vehicle device.

B. Results

We evaluate AdaptAV on the BDD100K object detection
dataset mentioned above. The dataset is split into the training
set (90%) and the validation set (10%). Recall that both the
oracle model on the cloud and the device model deployed on
the vehicle are pre-trained with the Waymo dataset and thus
have never seen the BDD100K dataset.

For the retraining process, we consider the following two
hyperparameters that affect the retraining speed and quality:

• Retraining sample rate: Cameras with a high sampling
rate will produce too many images, which can result not
only in an elongated retraining process but also overfitting,
as discussed earlier. Hence, it is necessary to downsample
the acquired images to reduce the size of the retraining set.

• Retraining window size: It represents the interval between
successive retrainings. Similar to the retraining sample rate,
a retraining window size that is too large will lead to
unnecessarily long retraining times, while a size that is too
small may result in the model failing to accurately learn
features within the corresponding retraining window.

As mentioned above, we use the BDD100K dataset for
the continuous retraining of the SSD-Mobilenet model. We
first equally divide the BDD100K dataset into four retraining
windows. Hence, each window consists of about 9000 images;
one can imagine the on-vehicle camera capturing 9000 images.
Then, AdaptAV applies a frame sampling technique, which
defaults to periodic sampling, and then trains the model to
convergence on each window using the preset retraining hyper-
parameters. Fig. 6 shows the validation losses over the whole

0 20 40 60 80 100
Training Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AP
 fo

r C
ar

1 Hz, 2 Windows
1 Hz, 4 Windows
0.5 Hz, 4 Windows
0.25 Hz, 4 Windows
0.125 Hz, 4 Windows

AP=0.006
without training

Fig. 7. Model accuracy (AP for the car class) v.s. retraining time for different
hyperparameter configurations. The number of windows refers to the number
of retraining windows into which the BDD100K training set is divided equally.
Each line is cut at the point where the y-axis value converges.

0 20 40 60 80 100
Training Epoch

3.4

3.6

3.8

4.0

4.2

Va
l L

os
s

Periodic Sampling
Density-based Sampling
Event-based Sampling

Fig. 8. The impacts of different sampling approaches on the validation loss.

retraining steps. Note that at the end of each retraining window,
the updated model is deployed (updated to the device). Hence,
what will be visible from the on-vehicle model are the final loss
values at the end of each window (i.e., 100th, 200th, 300th,
400th). As we can see, the loss of the model decreases as
the retraining process repeats, which indicates that its detection
accuracy improves with the continuous retraining. This is further
emphasized in Fig. 7, where the accuracy of the model (y-axis)
when directly tested on the BDD100K dataset (represented by
a single black point) is a mere 0.6%. The model, having never
encountered the scenarios in the BDD100K dataset, performs
extremely poorly. Retraining the model by just a single epoch,
represented by the data points at a time near 0 min (x-axis),
leads to a drastic improvement in the model performance, with
continuous retraining ultimately yielding an AP of nearly 60%.

Fig. 7 also evaluates the effect of different retraining window
sizes on the model retraining. As can be seen, although the
model can converge quickly even with a very low sampling rate
(small training set) the accuracy decreases; on the contrary, a
larger training set obtained with a higher sampling rate results
in a higher accuracy of the model but the time required for
convergence is also longer. In practice, one needs to select
proper hyperparameters according to the computing resources
on the cloud and the sampling rate of the vehicle camera, so
that the frames for retraining are not sampled too fast or slow.

Fig. 8 shows the impacts of periodic sampling, density-
based sampling, and event-based sampling on the validation
loss during retraining. Compared to the periodic sampling,
the two selective samplings help improve the model accuracy.

5

42 43 44 4541

47 48 49 5046

EVENT

37 38 39 4036

W
in

do
w

 #
8

W
in

do
w

 #
9

W
in

do
w

 #
10

Fig. 9. The blue-colored vehicle on the left of the scene is first detected by
the Oracle model at Frame 44. Thus, it is the only frame sampled by the event-
based method. The density-based method samples three frames from these three
windows, each with a length of five, although the scenes are similar.

H.264 Video Packets
(over TLS)

Autonomous shuttle
with ZED2 camera

NVIDIA Jetson Orin

Cloud
Storage

Virtual Machine with
NVIDIA A100 GPU

SSD-
MobileNet Faster R-

CNN

Updated SSD-MobileNet

Fig. 10. AdaptAV implemented on a small autonomous shuttle interacting
with a public cloud platform. The vehicle uses the NVIDIA Jetson Orin as its
computing platform and uses a ZED2 camera inputs for its vision tasks.

As discussed in the previous section, these selective sampling
techniques improve the quality of the frame samples by select-
ing the ones that contain more/better information than others.
Meanwhile, the event-based sampling performs the best out of
the three approaches overall. We can attribute this result to the
fact that both periodic and density-based methods are forced to
sample at least one frame during each sampling period. This can
result in sampling redundant frames, such as when the scene is
static or has low dynamics (e.g., due to the ego vehicle moving
slowly or being stopped), which leads to consecutive periods
sampling very similar frames. Fig. 9 illustrates such a situation.
These redundant frames contribute little new information during
retraining. Conversely, in high-dynamic scenes, both periodic
and density-based methods are limited to sample at most one
frame during each sampling period. As a result, they may miss
frames that would have been informative if sampled. The event-
based sampling is not constrained by the sampling period; it can
sample more or fewer frames depending on the scene dynamics,
which makes it suitable for mobile systems like vehicles.

It is important to note that both the density and event based
sampling techniques overcome the overfitting issue that is preva-
lent with continuous training of models. However, implement-
ing the event-based sampling requires additional computing
resources to run an object-tracking algorithm. Hence, one may
want to opt for the density-based method if computing power
is limited. Although it is not as powerful as the event-based
method, it performs better than the naive periodic sampling
technique while also preventing overfitting.

C. Usecase

We applied AdaptAV to a small-scale autonomous shuttle
to continuously improve the SSD-MobileNet object detection

0 50 100 150 200 250 300 350 400
Training Epoch

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Va
l L

os
s

Fig. 11. Validation loss curve for the object detection model running in the
autonomous shuttle.

model running in the vehicle, as shown in Figure 10. The
NVIDIA Jetson Orin device running on the shuttle uses a ZED2
stereo camera [26] for image inputs. The system ended up taking
approximately 14,000 frames at a rate of 15 frames per second,
which were compressed and sent individually to the cloud where
we applied the periodic sampling technique with a window size
of five. The vehicle’s object detection model was re-trained
with the ground truth generated by the Faster-RCNN model
in the cloud over four retraining windows. Figure 11 shows
the validation loss curve for each of those retraining windows.
From the final validation loss in each window, we can observe
that the on-vehicle model’s accuracy improves as the retraining
happens. Both the SSD-MobileNet and Faster R-CNN model
were initially trained on the Waymo Open Dataset.

The cloud platform greatly accelerates the inference speed
of the oracle model. For Faster R-CNN, the average inference
time on the NVIDIA Jetson Orin device for one single frame
captured by the shuttle reaches about 130 ms, while it takes only
28 ms for the cloud computing platform. The model training
is also significantly accelerated by the cloud as well; for 10
epochs of training for the same retraining window size, it takes
422 seconds to finish on our in-lab workstation (with Intel i9-
13900F CPU, 64 GB memory, and NVIDIA GeForce RTX 4090
GPU), but only 178 seconds on the cloud.

D. Discussion

• Vehicle data security and privacy: Vehicles’ vision data
carries inherent privacy risks. Unauthorized access to this
information could occur through network interception or
compromise of cloud storage systems, potentially leading
to severe breaches of individual privacy. Our usecase pre-
sented in Section IV-C ensures the privacy and integrity of
the data in transit and at rest by leveraging Transport Layer
Security (TLS) and storage encryption, respectively. Most
cloud platforms provide these security measures. Major
cloud providers also offer confidential VMs [27], which
enables the confidentiality and integrity of data in use.
This is achieved by hardware-based memory encryption;
in addition to isolation among VMs, data is decrypted only
when it is in use by CPU. This prevents other cloud tenants
and even the cloud provider from accessing the data used
by the confidential VMs, which can further improve the

6

privacy of vehicle data utilized by the oracle model for
ground truth generation or during the retraining process.

• Update overhead: The lightweight nature of the device
model allows us to run both the retrained and existing mod-
els simultaneously for a smooth transition between them.
We executed two instances of the SSD-MobileNet model
simultaneously on the NVIDIA Jetson Orin, which led to
a less than 1 ms increase in the inference times for each of
the model instances. Specifically, a single model instance
takes an average of 4.7 ms (with a standard deviation of
0.6 ms) per frame while the concurrent execution results
in the model taking 5.03 ms (with a standard deviation of
0.37 ms) per frame. Pruning, quantization, and hardware-
specific optimizations help achieve these extremely low
inference times.

• Model agnostic framework: The proposed framework is
not limited to Faster R-CNN or any particular models as
an oracle. Using more complex architectures like vision
transformers [28] [29] can provide more accurate ground
truth and thus improve the retraining performance.

• Other ML applications: A highly accurate oracle model is
crucial for leveraging the proposed framework, as it fully
automates the retraining pipeline to continually improve
the vehicle model. Such powerful models may not be easily
available for public use in certain ML applications such as
lane detection, steering angle prediction, and segmentation.
Furthermore, most AV datasets are heavily focused on the
object detection task. Therefore, we limit our evaluation to
object detection tasks, which are critical in AVs and for
which highly accurate models are more readily available.

V. CONCLUSION

AdaptAV continuously improves the vision model on an
autonomous vehicle by leveraging the cloud. The cloud runs
a highly accurate, large oracle model that is used to guide
the retraining of a small, on-vehicle perception model using
the live camera stream uploaded by the vehicle. We also
presented frame sampling techniques that can reduce the chance
of model overfitting and also improve the prediction accuracy.
An intuitive extension of this work is to expand the scale of
the system by collecting image streams from multiple vehicles.
This will lead to a more robust model that can generalize better
to diverse novel scenarios. We leave this as future work.

ACKNOWLEDGMENT

This work is supported in part by NSF grant 2302610,
NCSU Faculty Research and Professional Development, and
the Google Cloud Research Credits program with the award
GCP19980904. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and
do not necessarily reflect the views of sponsors.

REFERENCES

[1] H. Lipson and M. Kurman, Driverless: intelligent cars and the road ahead.
Mit Press, 2017.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, 2015.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Proc. of the European
Conference on Computer Vision, 2016.

[5] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

[6] “Self-driving uber kills arizona woman in first fatal crash involving
pedestrian,” The Guardian, 2018.

[7] “Waymo and zoox are under federal investigation as self-driving cars
behave erratically,” CNN, May 2024.

[8] Tesla, “Update vehicle firmware to improve certain fsd beta driving
operations,” 2024.

[9] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018.

[10] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[11] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie et al., “Yolov6: A single-stage object detection framework for
industrial applications,” arXiv preprint arXiv:2209.02976, 2022.

[12] R. Girshick, “Fast r-cnn,” in Proc. of the IEEE International conference
on Computer Vision, 2015.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proc. of
the IEEE international conference on computer vision, 2017.

[14] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proc. of the ACM symposium on cloud computing, 2018.

[15] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proc. of the 26th annual international conference on mobile
computing and networking, 2020.

[16] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, 2019.

[17] S. Lu, X. Yuan, and W. Shi, “Edge compression: An integrated frame-
work for compressive imaging processing on cavs,” in 2020 IEEE/ACM
Symposium on Edge Computing, 2020.

[18] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, Y. Shu, N. Kar-
ianakis, K. Hsieh, P. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in 19th USENIX
Symposium on Networked Systems Design and Implementation, 2022.

[19] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh, “Real-time
video inference on edge devices via adaptive model streaming,” in Proc.
of the IEEE/CVF International Conference on Computer Vision, 2021.

[20] “About ffmpeg,” https://ffmpeg.org/about.html.
[21] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,

and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

[22] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. of the IEEE International Conference on
Image Processing, 2016.

[23] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proc. of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, 2020.

[24] “Nvidia jetson orin,” https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-orin/.

[25] “Cloud computing services — google cloud,” https://cloud.google.com.
[26] “Zed 2,” https://www.stereolabs.com/products/zed-2.
[27] “Google cloud confidential vm overview,”

https://cloud.google.com/confidential-computing/confidential-
vm/docs/confidential-vm-overview.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[29] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
of the European conference on computer vision, 2020.

7

